PS2 - Programming tutorial @;‘gﬂ
=}

Programming PS2

Written by Alkampfer

PS2 - Programming tutorial @Fﬁlﬂ
=

Preface

The aim of this tutorial is to present a series of very simple programs to help the reader to familiarize
with the architecture of Playstation2® and the Linux kit. All the examples are developed for the Linux
Kit which can be easily purchased online. This document will not cover the installation of the kit and
all the libraries, there are a plenty of documents in the Linux Kit home site http://playstation2-
linux.com and I think that no one will have problem in installing and configuring the kit. The
prerequisites to reading this document are essentially a basic knowledge of C/C++ and Linux
Architecture as well as a knowledge of the basic notions needed to work with 3D graphics (Matrices,
Vectors, homogeneous space, affine transforms and so on). Please excuse me for my English that is not
very good, I will try to do my best to keep the document correct and smooth. Suggestions, corrections
and comments on this document will be very appreciated as they contribute to improve the document
and give me a feedback.

All the code is developed with basic distribution of linux kit except for SPS2 library downloadable at
linux kit home site. Since header of SPS2 library are used through the code there is the need to specify
to the compiler the directory where the SPS2 library resides, in my system for example is in directory
/Develop/sps2dev-0.3.0a. Since SPS2 is surely located in different path in your system, it is sufficient
to modify main makefile of the examples, changing variable SPS2DIR to the correct path. It is also
possible to invoke make specifying the dir (ex. make SPS2DIR=/Develop/sps2dev-0.3.0a).

I hope you will like this work and have fun programming PS2.

PS2 - Programming tutorial - Summary @ 11"1
o

t
1 SIMPLE CUBE ...uuueciiteeecenreeneceerseeeecsssesssssesssssssssssssssssssssssssssssssssssasses 4
1.1 FIRST GRAPHIC APPLICATION WITH PLAYSTATION 2 ..ouiiiuniiiiieiieeieeee et e e e e eeaeeannes 4
1.2 INIT GRAPHIC SYNTHESIZER ...ouueitntetteeeete et eeteeettee e et eetaeesetese e eetaaeeteeseaesesaeseesaeeennans 4
1.3 SETTING UP GEOMETRY ..utttintettt et et et e etee e e e e e e e taae e et e et e e taeeeaasesaseeaeeenneeesnaeerans 6
14 SEND DATA TO THE G ..ottt et et e e e et e et e e e e e s e eaaeeeaeeetaaeenans 8
1.5 SP S 2 LIBRARY ..ottt ettt et ettt e et e et e e et e e e e e taee e et s e s s e eaaeeeaeeeanaeeranaaes 12
2 CONTROLLERcccetettterennneeceeseeereereresssssssssesssssssssssssssssessse 16
2.1 KNOWING HOW TO READ JOYPAD DATA ...oiiiiieiiiee ettt ettt eae e e eans 16
2.2 INTERACT WITH THE JOYPADtuutiniinteie ittt ettt e et ete et et et s it eaas et eaneeaneenneennsannes 17
2.3 BUILDING A CLASS TO HANDLE CONTROLLER.ccuuttuttiuiintitneeneeeetneeseeineesneesneeneenneannes 19
JTEXTURING ..ccuueeeeceeeereeeeeneessescsseesessssssssssssssessse 21
3.1 TRANSFER A TEXTURE TO GS ..ottt ettt et e e et e e e e aaeeeeneeeens 21
3.2 DMA TRANSFER OF LARGE PORTION OF DATA ..covuuetttuneeeeetieeeeeeaeeeeeereeeeseesseeseesnnaeeeessnns 22
3.3 How 1O BUILD DMA PACKET TO TRANSFER A TEXTURE TO GS MEMORYcovvvvvvnnevinnnenn. 23
34 TEXTUREMANAGER CLASS ... etttueteeteee ettt ee e e eteeee e e aaeeeeeeaaaeeeestnesseesaneseeennaaneesenns 25
3.5 HOW TO USE UPLOADED TEXTURE IN MAIN PROGRAMuivuuiiiniiiieeiieeeieeeiieeeieeeenneeens 27
3.6 STQ TEXTURE COORDINATES AND PERSPECTIVE CORRECTION.........cccvvviiiiiiiaeeeeeerereennennn 28
3.7 GRAB THE SCREEN ON P2 ..ottt ettt e et e e e e e eeeeeaaas 30
4 VECTOR UNITS oootetueeereeneccereerescsssasssssesssssssesssssessssssssssssssssssossass 33
4.1 VUO INMACRO MODE ...covuueieiiieeeeetee e et e e et eeeeeteeeeeeaaaeeseeaaaeesesenesseesaaeseeeanaaeeessnns 33
4.2 SOME VECTORS AND MATRICES OPERATIONS IN VUO MACRO MODEc..uoovvnnivinniiinneiinnees 34
4.3 HORIZONTAL ADD AND TRANSFORMING A VECTOR.ccouniiiineiiineeiieeiieeeiaeeiieeeieeesnneenns 37
4.4 MULTIMEDIA REGISTERS TO TRANSPOSE A MATRIX ..cuutttunttitetetneeeeeeeteeeeteeennseenaeeesneeenns 40
4.5 IMICRO MODE. ...ttt et e e et e et e e et e e e e taee e et e eae s e eaaeeenaeenns 43
4.6 VI PACKET ...ttt e e e e e et e s et e et e et e e et s eae s e e e eenaeeens 45
4.7 SENDING DATA AND EXECUTING THE CODE. ...ccuutttunttiteeeteeeeeeeeeeeeeeesenaeseeeaeeesneeesneessaneees 46
4.8 IMICROPROGRAM ...ttt ettt e et e et ee e e s e e s et e et e e tae e et s enaseeaeeennaeenns 48
A THREE DIMENSIONAL VIEW......ucittttietnmecceeceeeseeesssssssssessses 52
A.l VIEW TRANSFORMttuuttitettteeete et e et e et eetaaeeetese s s e aaes et s esneetaesetesennseenaeeenaeenns 52
A.2 PROJECTION TRANSFORM AFTER LEFT HANDED VIEW TRANSFORMeoeetunverereeieeennneenn. 54
A3 MAPPING TO THE SCREEN.......tuuttutittintetn ittt et et esneese et taneeneensstnsesstesteeseenseennsans 57

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

1 Simple cube

1.1 First graphic application with playstation 2

This first example shows how to represent a simple cube with no texture
and no lighting model applied on Playstation 2 machine, using standard PS2
library that is shipped along with Linux Kit. In this first example the aim is to
achieve a basic knowledge of Graphic Synthesizer, consisting of initialization
and communication with the GS engine. To keep things simple, for this first
example, vector units are ignored and all calculations needed to represent the

cube are done in C++ code by the main core of the EE.

First project is very simple, all interesting things about PS2 are contained
in main.cpp, main file for the application. Others files contain code to work with
matrix and vector and a more detailed explanation on them is found in

appendix A. But now let’s go exploring PS2.

1.2 Init Graphic Synthesizer

Initialization of the GS

First operation to be done in a PS2 system is to correctly initialize
Graphic Synthesizer, the unit used to rasterize primitives on the screen. At the

beginning of the program the instruction:

pPs2_gs_gparam *gp = ps2_gs_get_gparam();

is used to obtain system information about current library. The function
Ps2_gs_get_gparam() cannot fail and fill the structure ps2_gs_gparam with all
information needed to use the library. Detailed information about this
structure could be found in documentation file of libps2dev library. Now the
program must set video mode type (VESA, PAL, NTSC, ...) this is done
consulting first argument of the program: default video mode is VESA but it is
possible to use switches -uzsc or -pal to select NTSC or PAL mode respectively.
Then some standard configuration are stored in global variables:
g_psm = PS2_GS_PSMCT32;
g_zpsm = PS2_GS_PSMZ24;
g_zbits = 24;
355 e ve_eaphicenode
g_fd_gs = ps2_gs_open(-1);
the program will use 32bit for front buffer and a Z-Buffer of 24 bits.
Functions ps2_gs_ve_graphicsmode() and ps2_gs_open() are used respectively to set

the console to graphics mode, and to initialize Graphic Synthesizer. Next step

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

How to set Double Buffering

is specifying video mode and depth buffer mode:

ps2_gs_reset (0,
PS2_GS_NOINTERLACE,
g_out_mode,
PS2_GS_FRAME,
PS2_GS_640x480,
PS2_GS_60Hz) ;

ps2_gs_set_dbuff (&g_db,
g_psm,

gp—>width,
gp—>height,
PS2_GS_ZGREATER,
g_zpsm,
1)

Function ps2_gs_reset() is used to set the format of front buffer. Note that
settings as 640x480 or 60 Hz are effective only if the video mode is set to
VESA because PAL and NTSC have fixed dimensions and refresh rate.
Function ps2_gs_set_dbuff{) is used to set double buffering, this function
essentially set the field of the ps2_gs_dbuff structure passed as first argument,
remember also that only context one is stored. Second parameter specifies the
format of front buffer, third and fourth parameters represent dimensions of
the screen in pixel and their value is taken from structure initialized at the
beginning of the program by the function ps2_gs_get_gparam(). Fifth parameter
is the test of Z-Buffer, set to pass depth test if the z-coordinate of pixel is
greater than the value already stored in the buffer. This is quite unusual
because test is usually set to pass if the z-coordinate is smaller, because this
means that the pixel is nearer to point of view. This difference arise because it
is possibile to use left handed or rigth handed coordinate system, difference
between these two representation are explanated in Appendix A. Finally there
is the format of Z-Buffer and the last parameter that force GS to clean drawing

area.

It is worth spending some time on ps2_gs_dbuff structure, that contains all
information to deal with double buffering. It is necessary to set clear() and clear?
members of that structure to specify color of the background of front buffer.
They are of type ps2_gs_clear and for this first example the only member of
interest is 7gbaq used to specify back color. This is done by the instruction:

*(__u6d4d *)&g_db.clear0.rgbag =

PS2_GS_SETREG_RGBAQ (0x10, 0x10, 0x10, OxFF,
0x3£800000) ;

Color is specified in a particular format that can be found in PS2 GS
programming manual, is a 64 bit value in witch the lower 32 bits represent a
standard RGBA color and upper 32 bits store the QQ value used for perspective

correction. This last value format is standard IEEE single floating point

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

precision.

Default value used into the example is a gray, very near to black and 1.0f
value for Q component. Note that PS2_GS_SETREG_RGBAQ macro
expects data to be binary values, so it is necessary to specify binary form of
single precision floating point number 1.0f that is well known to be
0x31800000.

Now all settings are done, it is possible to initialize GS to made it ready
for drawing:

//Initialize drawing environment and clear the buffers

ps2_gs_put_drawenv (&g_db.giftagl) ;

//Wait for all operations to be finished

ps2_gs_set_finish(&g_finish);

ps2_gs_wait_finish(&g_finish);

//Sync to V-Sync and start drawing in front buffer

odev = !ps2_gs_sync_v(0);

ps2_gs_start_display(l);

once these operations are done, the program enter in an infinite cycle,
for every step of the cycle a frame is rendered in BackBuffer. First operation to
do is lock the console to use it for drawing and swap the FrontBuffer with the
BackBuffer:

ps2_gs_vc_lock () ;

ps2_gs_swap_dbuff (&g_db, frame);

After the scene is rendered into BackBuffer the program waits for
V_Sync signal before switching to next frame, this is done to make frame rate
equal to refresh rate of the monitor to minimize distortions. Now let’s take a

deep look into the whole operation of setting geometry for this first cube.

1.3 Setting up geometry

Setting Geometry of the
Cube, 3D coordinates and
vertex colors

The object used for this first example is very simple because is a simple
cube with colors stored in the vertex and no textures. No lighting model is
used and all geometry stages are handled into EE without any use of Vector
units. This is done because main target for this first tutorial is setting up GS
and begin familiarizing with the PS2 engine, using Vector Units could made
confusion for this first example. All vertex are stored in a global array of
vertex.

PS2Math: :Vector4 Cubel[] = {
PS2Math: :Vector4 (-5.0, -5.0, 5.0, 1.0),

Colors are stored in another array called CubeColor(), vertex colors are

6

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

Setting up, World, View and
Projection matrix

chosen to make the cube half green and half red, with green part up.
Coordinate system used to represent vertex is a standard right-handed

coordinate system (X, v, z).

Projection matrix is to be build taking into account aspect ratio of
viewport, it is clearly necessary that near clipping plane has same aspect ratio of
the viewport to avoid distortion. To calculate aspect ratio it is sufficient to use
front buffer information contained into ps2_gs_gparam structure, remember also
to take into account pixel dimensions of the monitor/TV used. Remember
also that view matrix is left-handed and Projection Matrix has to be calculate
accordingly.

float xyAspectRatio =

static_cast<float> (gp—>width * gp->pixel_ratio) /
gp—>height;

Last step is creating ViewportMapping transform, this is quite simple
because all information about front buffer are stored in ps2_gs_gparam:

int xOffs = gp->width / 2;

int yOffs = gp->height / 2;

ProjMatrix.MapToViewPort (gp—->center_x - xOffs,

gp—->center_x + xOffs,
gp—>center_y + yOffs,
gp->center_y - yOffs,
16777215.000000,

0);

Since Z-Buffer test was set to pass if the value is greater, there is the
need to mirror coordinate system on Z direction, so object nearer to us have
greater Z, coordinate. This is done because a left-handed view matrix was used
and PS2 machine Z-Buffer was build to be used with a right handed coordinate
system. Note also that Y value of viewport grow from top to bottom so there
is the need to mirror also Y coordinate of transformed vertex for the scene to
be rendered correctly. These operation are done only once because view point
is fixed for this example. After View and projection matrix are retrieved, for
every frame, the position of the cube must be calculated.

To move the cube every frame, a World Matrix is generated storing a
rotation value for each of the main coordinate axys, these increments are
different to give to the cube a strange rotation movement. View point is fixed
and it’s chosen with eye position lying on z-axes at coordinate Z = 20 and
looking towards the origin of coordinate system, up direction is the Y axis, this
give us a good looking of the cube. Now it is sufficient to compose World,
View, and Projection matrix to obtain final transformation matrix.

TransformationMatrix =
ProjMatrix * ViewMatrix * WorldMatrix;

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

Since column vector notation is used, transformation of vectors is done
premultiplying the vector with matrix. This means that to combine two or
more transformations, matrix are to be multiplied in right to left order. Matrix
representing first transformation is the rightmost one into the multiplication
chain. In preceding example the order of application of three matrix are in fact:
World, View and finally Projection matrix. Remember not to invert the order

of these matrix because the result is very different from correct one.

1.4 Send data to the GS

Send data to GS with DMA
Controller

How to build DMA Packet

To render the cube on the screen all is needed to do is sending
information about vertices to Graphics Synthesizer; this operation is
accomplished with a simple DMA transfer. Data transfer between various units
of PS2 is in fact ruled by a DMA controller, this means that to do a DMA
transfer, data is to be stored in a particular format called DMA packet. Manuals
of PS2 contain all information about various DMA transfer modes, for this
first example there is no need to do complex stuff and so a single packet is
sufficient to transfer all data. First of all the application must allocate memory
to build DMA packet into, this memory has to be 16 byte aligned to be used by
DMA controller. A global area is declared using compiler directive to force

alignment'.

static u8 __attribute__ ((aligned(16)))

ScratchPad[l6 * 1024];

This emulate scratchpad memory, but remember that it’s normal
memory. This area is passed to a routine called MakeDM.APack(), together with
Transformation Matrix that is obtained by composition of World, View and
Projection. Transformation Matrix is in fact needed to transform all the vertex
of the cube from Model Space to the viewport coordinate system of the

screen.

To build DMA packet first step is build the DM.A header, a 128bit value
specifying to DMA controller what is contained into the packet and the type of

transfer to do.

int VertexNum = sizeof (Cube) / sizeof (Cube[0]);
int QWC = VertexNum * 2 + 1;

//This is the index into DMAPack
int DMAPackIndex = 0;

//Now create the HEADER

! Alignment can also be done manually allocating and aligning memory with malloc.

8

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

How to build a Gif Packet

v Q

S m RO P>

DMA TAG

GIF TAG

> =20

S mRQ>

DmaPack [DMAPackIndex++] .ul64[0] =
MAKE_DMA_HEADER (QWC, 0, PS2_DMATAG_END, 0);
To make simpler the creation of all bitfield representing: header, register
setting, etc there are a lot of useful macro such as MAKE_DMA_HEADER:

#define MAKE_DMA_HEADER (QWC, PCE, ID, IRQ) \
((__u64) (QWC) | ((_u64) (PCE) << 26) | \

((_u64) (ID) << 28) | ((__u64) (IRQ) << 31))

this is a simple shift chain to build correct bit pattern with no pain for
the programmer. This is useful because there is not the need to remember
binary map of structure to build. QWC is the number of 128bit WORD that
are to be transferred, PCE is a code that set priority of the packet, in this
example there is no need of particular priority settings so 0 value is used. ID is
the type of the packet and the value PS2_DMATAG_END means that after
transferring this packed, DMA controller has to end transfer. Finally IRQ is

used if an interrupt is needed after DMA transfer is ended.

To correctly build a DMA packet it is necessary to know exact structure
of data to be transferred, this because there is the need to know the size of the
whole packet to insert into DMA header. DMA controller in fact simply takes
QWC WORD following DMA tag and transfer them to GS without any need
to know what it’s really contained into. Since there are a lot of information that
could be sent to the rasterizer, Data sent to GS is organized in GS Primitives
consisting in an header followed by the real data. This header is called GIFtag
and specify format of data contained in the primitive so GS understand what
to do with these data. More that one GS Primitive can be send at once, field
EOP on GifTag is used to tell GS if current primitive is the last one or another
follows. Last primitive have EOP = 1, this means that there is no more
primitive following the current, a sequence of consecutive primitives are called
GS packet. Structure of whole DMA packet is represented in the picture at the
left, it is simply a GS packet with only a GS Primitive contained into one DMA
packet.

Structure of GS packet is more complex than DMA packet, this because
there are a lot of different type of data that the EE can send to GS. In this
example only vertices information about coordinates and colors are sent and
packet structure is very simple, but remember that general structure of GS

Packet is the same even for more complex transfers. As for DMA tag a macro
called SCE_GIF_SET _TAG is used to set Gif Tag.

SCE_GIF_SET_TAG (VertexNum, 1, 1, PrimReg,
PS2_GIFTAG_FLG_PACKED, 2);

Since GS packet is used to transfer a series of identical data structures

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

Specifying PRIM content for
each GS Primitive

Specifying format of data
contained in GIF Packet

(usually array of vertices), first part of the GIF tag, called NLOOP, specity
number of data structures contained in the primitive, in this first example this
number is equal to the number of vertices. This transfer type is called
PACKED mode, and means that a certain number of data structure follow
GIF tag, NLOOP contains number of these structures. Then EOP is used to
specify if there is another primitive following this packet, in this example is set
to 1 because this is the only GS primitive contained in GS Packet. Field called
PRE is particular and it is used to inform GS to set PRIM register with the
value contained into the GIF Tag. PRIM register is the one used to set
primitive rasterizing options.

Even if it’s possible to set PRIM globally for all primitives, it is
sometimes useful to set a different value for each primitive. To accomplish this
operation, GS permits to specify new value of PRIM register directly into GIF
Tag. In this way the content of PRIM reg could be changed for every data
transfer.

Then PACKED transfer mode is chosen and finally the number of
elements contained in a single data structure is specified in NREG field, this
last value is 2 because for every vertex only color and coordinates are to be

send.

Macro SCE_GIF_SET_TAG help to set lower 64bit part of the Gif Tag,
upper 64bit part is used to specify type of the data contained into the structure,
every field is specified with a 4 bit code, so a data structure can contain at most
16 different type of data. To easily set these value a particular structure called
sceGiflag is used, here is the code that set data structure to contain color and
vertex coordinates:

sceGifTag *GifTag =

(sceGifTag *) &DmaPack [DMAPackIndex];
GifTag->REGS0O = PS2_GIFTAG_REGS_RGBAQ;
GifTag->REGS1 = PS2_GIFTAG_REGS_XYZ2;

This specify that every data pack (vertex) contains an RGBAQ data and
a XYZ2 data. Note that whenever a XYZ2 data is written to the corresponding
register, the primitive point will be rasterized on the screen, this means that for
every vertex data structure, XYZ2 information has to be the last part of the

structure. Consult PS2 manuals for further details.

Now let’s take a step back, because the whole structure of GIF Packed is
known, it is possible to calculate its size to set QWC part of DMA header. Size
of the Gif Packet is equal to number of vertex times size of the structure
(VertexNum * 2), plus the size of the Gif Tag that is 1. Remember that QWC
size is give in 128bit words units, this means that total number of qwords to

send is:

10

PS2 - Tutorial Chapter 01 — Simple cube

Calculating coordinates
value for vertex to be stored
in front buffer

&R

int QWC = VertexNum * 2 + 1;

Another step back is to be done to explain how to build format for
PRIM Register:

__u32 PrimReg = SCE_GS_SET_PRIM(4, 1, O, 0, O, 0, O, 0, 0);

structure of PRIM register is contained in GS manual, in this example
primitive is given in triangle strip, Gouraud shading is used and texturing is
disabled. Value of PRIM register is then passed to SCE_GIF_SET_TAG to be
included into GIFtag, this is effective only if PRE field of GIFtag is 1.

After setting DMA Tag and GIFtag, rest of the packet is filled with
vertices information: color info are stored directly into CubeColor global
variables and vertices coordinates are obtained transforming each vertex with
TransformationMatrix. The whole process is simple and well commented but it
is worth enough to spent time on the routine ConverfIoFixedPoint() called

before sending vertices data to GS.

float PS2Math: :Vector4d: :ConvertToFixedPoint (int Vertex[]) {

float divw;

divw = 1.0 / w;

Vertex[0] = (int) (x * divw) << 4;
Vertex[1l] = (int) (y * divw) << 4;
Vertex[2] = (int) (z * divw);
Vertex[3] = 1;

return divw;

Format of front buffer coordinate system is 16 bit fixed point number,
with 12 bits for mantissa and 4 for fractional part, but vertices coordinates are
stored in 32 bits float variables. Routine ConvertToFixedPoint() performs
required transformation between these two different representations and also
deomogenize the vector. To accomplish this, x and y values must be first
divided by w, to obtain coordinate in 2d space of the screen and then
transformed to fixed point format of front buffer. This transformation
between floating point value and fixed point 16bit value is done in two parts,
first the value is cast to an int, dropping fractional part, then a shift of 4 digit
makes integer part fit into 12 bit mantissa of the Front Buffer. Dropping
fractional part means that if the final (X, Y) value of the coordinate is (5.7,
10.3) pixel (5, 10) it is used to represent the vertex, so a little approximation is
done, if necessary rounding can be used to minimize the error. Once DMA

packet is build it is sufficient to send it to DMA controller.

11

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

Send packet to DMA
Controller

1.5 SPS2 library

What is SPS2 library

Risk of using SPS2

ps2_dma_start (g_fd_gs, NULL, (ps2_dmatag *)ScratchPad);

This makes PS2 rasterize the cube on television or monitor. The only
operation left is waiting for the next frame to come.

frame++;

odev = !ps2_gs_sync_v(0);

ps2_gs_vc_unlock () ;

Function ps2_gs_sync_v(0) is used to wait next V-Blank signal, and
Ps2_gs_ve_unlock() function is used to unlock virtual console so there is

possibility for other application to use it.

Insead of using standard library shipped with the kit, most of the people
owning linux kit are using different library known as SPS2, written by Steven
Osman (AKA Sauce). The reasons of success of this library is essentially
direct access to PS2 internal hardware DMAC and VU/GS registers. SPS2
make possible work with PS2 console in a similar way as professional ps2
programmers do. For this reason first example seen in previous example will
be translated into SPS2 library and all following tutorials will be written mainly
for sps2 library. To run 07-MovingCube_sps2 example, SPS2 module and header

must be correctly installed and configured to make program compile and run.

Main difference between SPS2 and /ibps2dev is that direct access to
DMAC and internal register of the machine can crash the whole system if the
program contain some bug. Crash mean that ps2 linux system must be
rebooted, file system check will occur wasting precious time, so best thing to
do is to double check content of DMA packet, GIF tag, etc... before actually
send data to corresponding hardware. To accomplish this, a simple utility
written in VBINET (and so compatible only with Windows system with
framework NET installed) is included in this tutorial. This utility, still in a early
beta developing stage, permits to build the content of a particular register or
header of PS2 machine using an easy interface, it permits also to decode in a

efficient way GIF tag and other register formats.

First thing to do is make a routine to dump memory content to console,
since I use linux kit from my windows system with SSH connection, using a
standard printf{) function make text appears on my remote console, while the
scene is rendered on my television. The routine DumpDM.APack is used to
dump a number of 128 bit word to screen, starting from a given memory

address:

12

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

01-FirstCube_sps2

Initing and allocating
memory on SPS2

Talking to DMAC

void DumpDMAPack (void *Data, int Num) {

//D is a pointer to sps2uint32[4] element.
sps2uint32 (*D) [4] = (sps2uint32 (*)[4]) Data;
for (int T = 0; I < Num; ++I) {

printf ("$d:\t%X $X $X %$X\n", I,
D[I][O], D[I][1], D[I][2], D[I][3]);

memory is simply cast to a pointer to array of four int, every 128 bit
word is dumped subdivided into four 32 bit part, from right to left because

PS2 layout of data is little endian.

Converting program from libps2dev to SPS2 library is straightforward,
since the hard part of the work is still the same: using matrix and build DMA
packet for GS. The only things that are changed are: initialization part and the
instructions used to use DMAC controller. All initialization code is reduced to
a simple call to init function of the library, followed by the creation of a

suitable memory area to build DMA packet into.

iSPS2Descriptor=sps2Init () ;

pMemory=sps2Allocate (4096,
SPS2_MAP_BLOCK_4K | SPS2_MAP_UNCACHED,
iSPS2Descriptor);

sps2UScreenInit (0) ;

The function sps2Init() is enough to initialize the whole library,
sps2Alocate() is then used to allocate alighed memory in multiple of 4Kb block.
This particular routine is used because DMAC can only transfer block of
memory that are 16 byte aligned and it wants Physical addresses not virtual
ones. Function sps2Allocate() permit to allocate memory in a particular
structure to retrieve its physical address. Finally sps2S8ereenlnit() is used to
initialize the screen of the console. All these functions are well documented in
the SPS2 library documentation, so there is no use to spent more word on

them.

Projection matrix is build the same way as the preceding example with a
slightly difference: aspect ratio is set to canonical 4/3 value, and the centre of
the viewport is mapped at point (2048, 2048) of frame buffer. This value is
specific to SPS2 library. Dimension of the viewport is simply retrieved with the
tunctions §ps2UScreenGetWidth() and sps2UScreenGetHeight ().

After initialization it is time to start rendering cycle: function
sps2US creenClear() is used to clear the buffer, then we must build DMA packet

containing vertex data to be sent to GS processor. Construction of DMA

13

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

Setting and starting DMA
transfer

Ending application.

packet is identical to previous example, only one little thing is changed, there is
no DMA header and packet begins directly with GIFtag. This because in the
preceding example a simple address is passed to DMAC to start transfer, in
this way the DMAC can control the header at that address to know type and
size of data to be transferred. With SPS2, with direct access to PS2 hardwate, it
can be possible to instruct DMAC directly accessing its registers to specify type
of transfer. DMAC registers are memory mapped and SPS2 library have
suitable declaration that permit to access them through pointer syntax, every

register is mapped as a simple pointer and data can be stored and read on it.

To send data with DMAC three registers are used, Dn_QWC,
Dn_MADR and Dn_CHCR, where n indicates channel to be used. Page 59
of EE manual states that GS channel have number 2, so registers used to
transfer data to GS are called D2_QWC, D2_MADR and D2_CHCR.
D2_QWC contains size of data to be transferred and is the first register to be
set, D2_MADR contains address of data to be transferred and it is set
immediately after QWC. Remember that DMAC takes no virtual address but
only physical ones, so SPS2 comes with useful routine that permit to allocate
memory and obtain its physical address. The only drawback of this is that
memory should be allocated in chunk of 4KB and if more than one block is
allocated, then physical block can be no contiguous, but for this first example

this issue is not really a problem.

Last register to be set is D2_CHCR, that is called channel control register, it
is used to specify type of the transfer and also to start transfer itself. In fact,
when the byte 8 (STR) is set to 1, DMAC begins the transfer, using data
contained in this 3 registers. Since in this application only a simple packet is
send, D2_CHCR value is calculated before rendering cycle, using structure
Dn_CHCR_# that help us to set correct values for the register.

After setting D2_CHCR register, the application needs to wait for DMA

operation to complete, and then swap the frame buffer:

//Wait for the DMA transfer to finish
sps2WaitForDMA (2, iSPS2Descriptor) ;

//Swap displays now that we're done

sps2UScreenSwap () ;

Finally, after rendering cycle is ended, allocated memory must be free

and library must be deinitialized.

//Shut down the screen
sps2UScreenShutdown () ;

//Free memory used to store DMA packet
sps2Free (pMemory) ;

14

PS2 - Tutorial Chapter 01 — Simple cube @Fﬁlﬂ
=

//Close library
sps2Release (1SPS2Descriptor) ;

Particular attention must be paid before actually sending data to GS, this
because, as stated before, sending wrong data can crash the system, especially if
wrong values are written to DMAC registers. One way to avoid this problem,
is dumping to screen packet to be send turning off transfer of data, in this way
there is the possibility to check the data before doing some damage to the file
system. Simple function DumpDMAPack() permits to dump content of
memory area, as seen before. Then is possible to insert values of GlFtag in
program RegMaker” included with the tutorial; pressing Sync button makes the
program analyze content of the register actually showing values of the various
parts that compose register itself. In this way, checking GIFtag value is really a

breeze.

As final note remember that to use SPS2 library there is the necessity to
specify directory of installation of the library, this can be easily accomplished
by variable SPS2DIR present in makefile. In my system I installed SPS2 library
in path /Develop/sps2dev-0.3.0a so to compile the code I invoke make

utility with this command line:

make SPS2DIR=/Develop/sps2dev-0.3.0a

Since playstation2 linux community seems to prefer SPS2 library, rest of
this tutorial will concern mainly on SPS2 library. Thanks again to Steven

Osman (sauce) for making SPS2 available to linux kit community.

% This program is a very simple utility still in early beta form, only few registers format are supported, even if adding new register format is
straightforward in its xml configuration file.

15

PS2 - Tutorial Chapter 03 — Texturing @h}ﬂ
=

2 Controller

2.1 Knowing how to read JoyPad data

PS2 Peripherals: The
controller

Using joypad in PS2 system is not difficult, but standard joypad library of
linux system makes impossible to access all functionalities of the pad. To have
maximum control over whole set of functions that DualShock offers to the
programmer, there is the need to descend at low level, and read pad data in
binary raw format. Linux kit can in fact map joypad as standard device with
name /dev/ps2pad00 and /dev/psdpadl0, these two files represent devices
connected in the two standard joypad ports of PS2 console. Presence of only
two devices files means that multitap is not supported and is impossible using

more than two joypad simultaneously.

Reading data and interact To access a joypad corresponding device must be opened with standard
it the controller C function gpen(), that returns an handle to the file. Once the file is opened, pad
data can be read with standard read() function. To interact with the device Zoct/()
function must be used, comprehensive list of all the services supported by the
pad are listed and explained with detail in document file ps2pad_en.7xt located in
standard Playstation documentation directory /usr/ doc/ PlayStation2/, supposing
that kernel documentation 1is correctly installed into the system.
Documentation on pad still lacks the definition of structure of data read from
the joypad devices. With read() function 32 bytes of data can be read from the
joypad with every call, but there is no documentation file that tells us how to
use these values. Solution to this problem is building a little program that
Dumping data content dump these data on screen, in this way acting on the pad make possible finding
how the button and the axis are mapped. Example 02-ControllerData is build to
make this check. Code of the example is straightforward: pad is first opened,
than a check is made to see if the pad is functional, then analog pressure of
button is activated and a loop, in witch data is read and dump from the pad, is

started.

Using output of this utility it is possible to find that digital states
(pressed/unpressed) of all buttons are stored in byte number 3 and 4 of raw
data, first byte is zero and byte 2 represents type and status of the pad. Byte 2
is in fact composed by three distinct values: bit 0-1 status of the pad, bit 2-3
status of asynchronous operation on the pad, bit 4-7 type of pad connected to
the port. All the analog values (Buttons, sticks and directional cross) are
mapped with a single unsigned byte value, ranging from 0 (no pressure) to 255
(maximum pressure). Every analog value needs a whole byte to be represented,

so byte 4 through 19 are used to map analog values. In library header file Pad.5,

16

PS2 - Tutorial Chapter 03 — Texturing @h}ﬂ
=

some values are defined to help working with raw data, in particular there are
the mask to check digital buttons. Remember also that a value of 0 means that

the button is pressed while a value of 1 means that button is unpressed.

2.2 Interact with the joypad

Accessing joypad features
with ioctl

Different Access Modes

Analog and Digital mode of
the pad

Choosing and locking mode
of the pad

Knowing structure of data read from joypad is not enough; to fully
access all its features there is the need to know the various ioctl() services
supported by the pad itself. Each of them is characterized by a constant value
that identify the operation and an optional value if needed by requested

operation. Whole set of services supported by the pad is contained in help file.

Before looking at most useful services supported by the pad, we must
understand joypad features, first of all device can be open in two distinct
mode: block mode (default) in witch program execution is suspended whenever
some service is used or non-block, useful to manage asynchronous operations.
This is useful to execute all long operation of the pad, in this way program can
continue the execution while the pad has not completed requested task.
Blocking mode is enough for use with simple applications, so do not mind

using non blocking access type for now.

DualShock and Analog pad have also two distinct operating mode: analog
and digital, moreover, in analog mode, all buttons support reading analog
pressure of the button, not only digital (1/0) state. User can choose to switch
between analog and digital mode with a button located on the joypad, while
analog buttons mode must be set with code, this because not every application
needs to know analog pressure of button, and so it is enabled only when really

needed.

Switching between analog and digital mode can be done even with code,
it is sufficient to use PSZPAD_IOCSETMODE service with ioctl(). This
service requires a structure made of two int as parameter: gffs is used to specify
the mode to operate with, 0 is for digital and 1 is for analog, while /ck is used
to determine what to do with that setting. Value of O left setting unchanged,
value of 1 enable selected mode, value of 3 lock the pad in selected mode and
finally value of 2 unlock previous locked setting. When an application lock the
joypad in a specific mode (analog/digital) user cannot use button on the joypad
to switch between these two. This is done to prevent user disable analog mode
with application that does not work with digital mode. Remember that value of
2 does not change the state of the setting, but it only unlock a previous locked

setting.

17

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

Query pad for informations

Actuators and DualShock®

ps2pad_mode PS2PMode;

PS2PMode.offs = 1;

PS2PMode.lock = 3;

ioctl (JoypadO, PS2PAD_IOCSETMODE, &PS2PMode) ;

Remember to unlock all settings before exiting from the program, if not
the device remains locked in selected state. Lock is particularly useful for
application that needs to activate analog buttons, this because if the user switch
to digital mode and then to analog mode again, analog pressure of the buttons
is disabled and must be set again by the application. In this situation is vital
locking the pad in analog mode to avoid this problem. Once analog mode is
activated, analog buttons pressure can be enabled/disabled with a simple
ioctl()call:

ioctl (Joypad0, PS2PAD_IOCENTERPRESSMODE); //Enable
ioctl (Joypad0, PS2PAD_IOCEXITPRESSMODE); //Disable

Another fundamental service is PS2PAD_IOCGETSTAT, used to query
status of the pad. Pad can in fact be in one of these states: ready, busy, error or
not present. To read status of the pad it is necessary to make a cycle, reading
again until the pad is busy:

int PadStatus =

ioctl (Joypad0, PS2PAD_IOCGETSTAT, &PadStatus);
while (PadStatus == PS2PAD_STAT_BUSY) {

ioctl (Joypad0, PS2PAD_IOCGETSTAT, &PadStatus);

The only parameter associated to PS2PAD_IOCGETSTAT is the
address of an int variable that will contain the state of the pad at the end of

ioctl() function.

Last set of ioctl() services regard the actuators of the pad. Dual Shock
has two different actuators, the first (ID 0) has fixed intensity while the second
(ID 1) has an intensity that can be changed with continuity from 0 to 255. Both
of these actuators must be set with a single ioctl() service call:
PS2PAD_IOCSETACT that use a simple structure called ps2pad as parameter:

struct ps2pad_act {
int len;

unsigned char datal[32];

bi

Member /en of the structure has to be set to value 6, accordingly to the

documentation, dafa is a simple array of char values that are passed to

18

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

corresponding actuator. Remember that indexes of data array does not
correspond to actuator ID, in fact before actuators can be used with
PS2PAD_IOCSETACT, ID must be assigned to the index of data array with
service PS2PAD_IOCSETACTALIGN. This can be accomplished with a
simple call:

ps2pad_act PSact;

PSact.len = 6;

memset (PSact.data, -1, sizeof (PSact.data));

PSact.data[0] = 0; //Actuator O

PSact.data[l] = 1; //Actuator 1
ioctl (JoypadO, PS2PAD_IOCSETACTALIGN, &PSact);

This means that actuator ID number 0 is related to first element of data
array while actuator with ID 1 correspond to second element, in this way
actuator’s ID and index of data array in ps2pad structure are the same, this is
the most natural setting. Now it is possible to send value 1 to actuator zero to
have constant vibration or set an intensity value to actuator 2 to have a range

of vibration.

2.3 Building a class to handle controller

JoypadManager class to
handle controllers

How to use JoypadManager
class

Now that the structure of data read from the pad is well known it is
possible to write a simple class to handle joypad data, this is necessary to access
data more easily. The name of this class is JoypadManager, and is build to
support basic functions, many things could be improved as for example access
mode that is made only synchronous. Project 02-ControlledManager contains the
definition of the class together with a simple program to test basic functions of

the JoypadManager Class.

Construction of the class is very simple and so there is no need to
analyze its structure, help file can show whatever information is needed on the
class. Here follows a simple example that shows how to use JoypadManager
objects to retrieve information about status of digital buttons. To access a
joypad it is sufficient to declare a new JoypadManager object, passing the ID of
the pad to class constructor, ID 0 means pad in port 1 and ID 1 means pad in

port 2. Then is necessary to check if the joypad is ready to use.

To read data from the pad member function ReadPadData() must be
called, this function read data from the pad and update its internal structure of

button status. Possible states of digital buttons are:
® Pressed: button is pressed and was not pressed before

® MPressed: button is maintained pressed, it means that the button

19

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

Playing with actuators

was pressed last call
® UnPressed: Button is not pressed and was not pressed last call
® Released: Button is not pressed but it was pressed last call.

JoypadManager maintains information on last pressure state of the

button, this is very useful for example to check when a button is released.

When in analog mode, digital status are still retrieved, but for every
button it is possible to know its pressure value, normalized in range [0.0f, 1.0f].
Analog sticks are also enabled and their value is normalized to the interval
[-1.0£, 1.0f] too. To access buttons data is sufficient accessing array of structure

AnalogButton that contain information of all buttons present on the joypad.

Finally there is the possibility to use actuators, but first a call to member
tunction EnableActuators() must be done to initialize both actuators. To make
use of the class easier as possible, each of the two actuator can be used
separately from the other, so there are two member functions to play with
actuators, the first SezActuatorConst() enable/disable constant actuator, while
SetActuatorlariable() is used to set vibration value of variable actuator, valid
range is [0, 255].

Remember that is possible to lock joypad in analog mode, but is
necessary to unlock it before exiting from the application, if not, joypad will
remain lock even after the application is shuttled down. Moreover when
playing with actuators it is also necessary to shut down both of them when
exiting from the program, to avoid pad continue shaking without control after
the application is closed. To avoid these problems, locking of pad in analog
mode is automatically removed in destructor of the class, but actuators status
must be reset from the application, this because there is the possibility that the
user really wants the joypad to continue rumbling even when the

JoypadManager object is destroyed.

Last example puts together first example of the cube and JoypadManager
class, the result is a cube that can be moved with left analog stick and shaken
with cross and circle buttons. Applying movement to the cube is a very simple
process because it’s sufficient to analyze pad data every frame updating world

matrix that represents cube position in the scene.

20

PS2 - Tutorial Chapter 03 — Texturing @FEH
=

3 Texturing

3.1 Transfer a texture to GS

Transfer Texture data to GS A texture is nothing more than a sequence of pixel arranged in a square
matrix, a simple raster image, that is applied to the primitive rasterized by GS
processor. This means that texture data are to be transferred into GS memory
before the texture can be used, this because GS can access only its internal
memory. Transfer of large portion of data into GS memory is ruled by five
internal register called BITBLTBUF, TRXPOS, TRXREG, TRXDIT and
HWREG. Among these register, HWREG plays a special role, and will be
discussed after the others. First four registers specify destination address and
pixel format of the image to be transferred and must be set before HWREG is

accessed.

Specifying buffer properties BITBLTBUF register is used to specify propertied of the buffer to
upload the texture into, it contains address of GS memory where to upload the
texture, type of pixel and width of the buffer used. This register has six field,

three related to transfer from host memory to local GS memory and the other
Buffer Area

— used with transfer from GS local memory to host memory’. To transfer
mage Area

texture, direction is from host t0 local, this means that only upper word of the

register is used. Remember that BITBLTBUF register contains buffer area

properties where the image is located, but the image itself can be a subset of

this area.

DBP field address units It is worth spending some time on measure unit of the three quantity
used to specify image data. Address in GS memory (DBP) is given in unit of 64
word, this mean that if we have size in bytes, since every word is 4 byte,
original address has to be divided by 256 (64 * 4) to obtain correct value for
DBP field. Usually first texture is uploaded into first free page of GS RAM,
that is the first page after frame and Z buffer. This address can be retrieved
with a call to sps2 library function sps2UScreenGetFirstbreeGS Page() that gives the
number of the first free page in GS memory. Since a page in GS memory is
8192 bytes, to convert this value into correct measure unit for DBP, we must
first multiply page address by 8192 and then divide by 256, resulting in a
overall multiplication of original page address by 32. Even the DBW field,
representing destination buffer width, must be expressed in unit of 64 pixel, if
an image is 128x128 pixels, this value is 2. Finally DPSM contain an

enumerated value representing format of the pixel.

% In a later section of this chapter will be analyzed the code to make a screenshot of a running program.

21

PS2 - Tutorial Chapter 03 — Texturing @h}ﬂ
=

Coordinate offset of uploading
address

Size of the image

How to send whole texture to
HWREG

Ending and flushing data
transfer.

TRXPOS is used to specify upper left point coordinate in buffer
transmission area. For this first example only one texture at a time is
transferred and it is positioned at the top of the page, so both X and Y
coordinate must be zero. If a large number of small texture are to be uploaded
it is more convenient arrange all texture in a bigger one, and then upload all of

them as a single texture.

TRXREG specify width and height of the image to be transferred. With
this last register, all information needed to store texture data into GS memory
are set. Now to start the transfer, value 0 (Host to local) must be set in register
TRXDIR, this makes the transfer start. Once the TRXDIR is accessed and the
transfer started, to send data we must write each pixel, from upper left to down
right, to the register HWREG, GS will do the rest, placing value in correct
memory location. This particular way to transfer data makes possible to
transfer other data while transferring texels, documentation says that
transferring data in this way does not overtake a drawing primitive command
issued before TRXDIR register was set. This means that it is possible to

transfer texture and primitive at the same time.

Since setting HWREG in packed mode can be done only with A+D
addressing, it is clear that transferring texel data with this method is virtually
impossible. For this reason GIFtag can specify also IMAGE mode, where
NLOOP is the number of qword to be transferred, and all qwords following
GIFtag are considered to be a continuous stream of dword (64 bits), that will
be written sequentially to HWREG register. To transfer whole texture data a
single GlFtag followed by all texel of the image would be enough, but
remember that is impossible to allocate a large portion of physically contiguous
RAM. This problem and the real structure of DMA packet used to transfer

texture data into GS will be discussed in next paragraphs.

Last operation is ending transfer of texture data setting TRXDIR to
binary value 11, this makes the transfer ends. A better approach is access
TEXFLUSH register (write any value on it), this makes GS wait for transfer

operation to finish and then stop transfer.

3.2 DMA transfer of large portion of data

To transfer Texture from local memory to GS memory a DMA transfer
is needed, but it is not possible to use Normal transfer mode because data

often excess 4KB of size. Normal transfer mode is used to transfer data that

22

PS2 - Tutorial Chapter 03 — Texturing @h}ﬂ
=

Lack of physical contiguity

Source chain transfer mode

DMA tag in source chain
mode

DMA chain tag type

are contiguous in physical memory* but remember that sps2Allocate() cannot
guarantee physical contiguity of allocated pages. For this reason it is impossible
to transfer whole texture with a single DMA packet, to handle this problem,
DMAC controller supports Chain Transfer Mode, used to transfer large portion
of data with a single DMA transfer splitted in many small packages, each of
them smaller or equal to 4KB. Chain transfer mode supports both transferring
from main memory to peripherals and back, to send texture data we are
interested only in Sowrce Chain Mode, used to transfer data from main memory
to peripherals. This kind of transfer is started in a similar way as normal mode,
setting Dn_MADR, Dn_QWC and Dn_CHCR registers, but another register
is used, Dn_TADR. To start transfer is also needed to specify Source Chain
Mode in Dn_CHCR register. When the transfer start, DMAC begins
transferring QWC words from the address stored in Dn_MADR, but when
this transfer is ended, transfer is continued reading the DMA tag stored in

memory pointed by Dn_TADR. This tag contains three information

® Address that contain the data to be transferred next (goes to
Dn_MADR)

® Size of data to be transferred next (goes to Dn_QWC)
® Instruction on how to locate next tag to continue transfer.

The name “Chain Transfer mode” means that a chain of DMA transfer
is done, in with every transfer (ruled by a DMA tag) contains both the
information of data to transfer as well as information to locate tag of next

transfer.

Different type of tag are supported by the DMAC to build different
transfer chain, all these types are described in PS2 manuals and each of them
will be explained in detail when encountered in the tutorial. In this chapter it is
enough to focus on r¢f and et type, used to transfer texture data. All of these
tag are based on the same structure represented at page 32 of GS manuals.
From the picture it can be easily seen that they are composed by three distinct

parts, usd to specify Size, Location of data and location of the next tag.

3.3 How to build DMA packet to transfer a texture to GS memory

Using A+D transfer with
GlFtag

As for vertex data, first qword of DMA packet is a GIFtag, as seen
before first step is setting the four registers used to identify texture data, this

makes data transfer begin. Looking at GIFtag structure we find that these

* Remember that when dealing with DMA transfer Physical addresses are used, memory allocated by the sps2Allocate function allocate a
single continuous portion of memory in local address space not in physical one.

23

PS2 - Tutorial Chapter 03 — Texturing @FEH
=

S [DMA TAG
b i | A+D GifTag
R i RegAddr| Value
L
M: RegAddr| Value
I+ JRegAddr| Value
¥ | RegAddr | Value
\Y%
E

DMA TAG
(S; ' | A+D GifTag
P 1 [IMAGE GifTag
C
K| .
E ! A+D GifTag
T

Reading texture data in
different memory area

> <O

> 20

s mRQ>T

HmR QP> T

>=Z O

HmR O P>

registers cannot be addressed directly in regs field, so A+D data must be
specified. A+D data means that the NLOOP qwords following GIFtag
represent values to be stored into GS registers. Each of these 128 bit value
contains both the address and the data to store into GS register, address of the
register is its hexadecimal value found in GS manual. Since four register are to
be accessed, four qword are needed. Structure of the beginning of packet is

represented in the picture.

After these registers are set, another GS Primitive, containing texture
data, must be sent to GS with IMAGE format as discussed before. Structure of
IMAGE packet is very simple, NLOOP QuadWord after GIlFtag are
transferred into HWREG register and stored into memory according tothe
four image transfer registers. Finally, after all the texel are transferred to GS
memory, it is necessary to set TEXFLUSH register to end image transfer, this
is accomplished with another GS Primitive (standard PACKED mode) with a
single A+D registet.

To transfer whole texture to GS we need three GS Primitive, that could
be contained in a single DMA pack, as represented in the picture.
Unfortunately pixel data often take more than 4KB of space making the whole
DMA packet larger than a single page so it is impossible to transfer all data in
one shot, because of lack of physical continuity in DMA pack. This happens
because sps2Allocate() function could not allocate physically contiguous RAM,

as states into the documentation.

The obvious solution to this problem is using multiple DMA packet,
now it’s the time to use Chain transfer mode. To understand overall structure
of the packet remember that it is possible to split a GS Primitive in more than

one DMA packet if this two packet are to be sent contiguously.

First type of Chain tag used is e type, it makes DMAC transfer QWC
qword of data following the tag, and read next qword as the next tag of Chain
transfer. This is useful but is not enough to transfer a whole texture, because it
is impossible to specify the address of a different page. Structure of DMA
packet composed only by e tag is showed in figure at the left, it is used to
contain first GS Primitive (four A+D registers) and the GIFtag of the Gif
packet containing texture pixels. This means that IMAGE GIF Packet is
splitted in more than one DMA pack, but as seen before this is not a big

problem.

Since texture is a long file, it is convenient to read pixel data in a
different memory location respect DMA packet, as we will see later this
memory is allocated with a separate call of sps2Allocate inside the constructor

of TextureManager class. But this will be explained later in this chapter.

24

PS2 - Tutorial Chapter 03 — Texturing @E‘gﬂ
=

Complete structure of DMA
packet

Physical contiguity solved

If texture is stored in completely different pages from DMA packet,
most obvious solution is to use 7¢f tag to transfer pixel data. This tag instruct
DMAC to transfer QWC gwords of data at the address contained in its ADDR
tield and take next qword following current tag as next tag. With this tag, we
can use a single ref tag for every 4KB page used to store texture data, all these

ref tag are positioned after the first cnt tag.

Finally end tag tells DMAC to transfer QWC qwords of data following
the tag and stop the transfer, this last tag is useful to write into TEXFLUSH
register and terminate texture upload. Structure of whole Chain used to

transfer texture data is represented in following picture.

From this picture is clear that texture data is allocated into as many pages

Cnt tag (QWC = 6) Texture

A+D GifTag pixel >
4 A+d Regs data Texture
pixel
data

6 qword

IMAGE GlIFtag

ref tag

1 Page (256 qword)

Ref tags ref tag

1 Page (256 qword)

end tag (QWC =2)
A+D GifTag
1 A+d Regs

2 qword

as needed, and then each of these page is transferred with a ref tag during
chain mode. Since 10 qwords of DMA packet are used by cnt and end tag,
there is rooms for 246 ref tag, and since each of them can address a whole
page (4KB) it is possible to transfer a texture up to 1MB fitting all DMA tags
into a single page of ram, this means that there is no more risk of having DMA

packet going across page boundary’.

CLUT data can be send to GS with the same schema used for texture
with the only difference that whole CLUT fits into a single page of ram and so
a single ref tag is needed, moreover texture transfer can be flushed after both

texture data and CLUT data is transferred to GS.

3.4 TextureManager Class

How to handle a texture

To help handling texture a simple C++ class was build to manage
loading a texture from disk, uploading texels to GS and building register for

51 MB texture is impossible to fit into GS memory together with frame buffers and depth buffer, it is also not useful having memory

wasted with such a big texture.

25

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

texturing to be set before a primitive is rendered. This class is contained in
example project 03-TextureManager’, and will be hopefully expanded in the
future to handle more feature as CLUT, Alpha, swizzling and so on. This class
is made for the purpose of showing how to deal with texture, code is not
optimized, and memory is not handled efficiently because each instance of
TextureManager class load and free texture memory. A better approach is
allocate enough space to contain bigger texture for the whole program and use
that area to handle one texture at time.

Build own texture file format Instead of making TextureManager class to access some known file

format as targa or bitmap, a better solution is to build own image format to
make texture manager class simpler and faster. A simple utility in Visual Basic
is build to convert an image (jpg, tiff, bmp) into this proprietary file format,
this program is called TextureConverter and can be used also to convert pixel
format (in this first release only RGBA and RGB are supported) and change

size of the image.

Format of the file is very simple, and consist of a simple header
containing image information (format, size..) followed by RGB data of texels,
starting from upper left to bottom right. This make TextureManager class to
load the texture quickly because no decompression or other operation has to
be done. The only drawback of using this format is that texture files tends to
be big file, but if really space is a problem a simple zip algorithm can be
introduced to shrink the size of the image. Hawing own file format makes

possible to handle the texture off-time, reducing run time cost.

TextureManager class in TextureManager constructor simply access file containing the texture and
detatls load all texel data into a region of memory allocated with spsZMemoryAlloc().
Once TextureManager object is successfully created a call to Sendlexture()
public method upload texture data to GS. This methods accept two arguments,
the first is the address of GS where to upload the texture, the second is a
sps2Memory_t object that represent the memory in witch to build DMA
packet to send the texture. GS address must be a beginning of a GS page, its
value can be obtained by the function sps2UScreenGettirstFreeGSPage() if only

one texture at a time is uploaded, remember that this address must be

expressed in unit of 64 word.

TetxtureManger object assume that texture is to be uploaded at the
beginning of the address specified by GSAddress parameters, this makes the
upload function straightforward. Structure of the packet to send data is already

discussed in preceding paragraph.

® Thanks to guardian for giving me permission to use his mammoth symbol as texture file.

26

PS2 - Tutorial Chapter 03 — Texturing @h}ﬂ
=

3.5 How to use uploaded texture in main program

Set currently used texture

TextureManager build TEXO
register

Different Texture functions

TEXO register

Setting CLAMP register

After all textures are uploaded, to choose witch of them the GS must
use, register TEXO must be set. This register specify the address of current
texture in GS memory, in this way the user can choose any of the uploaded
textures to use with next primitives that will be rendered. Since it is possible to
upload more than one texture at a time, this register must be set by main

program.

Since TEXO register is used to specify basic information about the
texture such as height, width, pixel format etc, it needs to know texture
information stored by TextureManager object used to upload the texture. This
can suggest that function to build TEXO register is to be included in texture
manager. But it is worth to know that in TEXO TextureFunction (DECAL,
MODULATE, etc) is set and this value is logically managed outside
TextureManager class. For this reason TextureManager class has a member
function called Buz/dI'EX0() that return a valid value for TEXO to send to GS.
The only parameter accepted by this function is the TextureFunction to use. In

this way main program can correctly set whichever texture is desidered.

GS supportt four type of texture functions, details on them are given in
GS manual; the only peculiarity it is worth to spent time on, is the way GS
handle MODULATE function. When texture colour is modulated with
fragment colour (colour stored into vertices), texture colour is represented
same as original image when fragment colour is 0x80. This means that if
texturing is used, vertex colour should range from 0x00 to 0x80 in all the three
component. Using greater valued makes pixel of the texture to appear brighter.
Pressing TRIANGLE button on the pad switch between MODULATE and

DECAL texture function so you can appreciate the difference.

To completely set texture environment another two register must be set,
first of them is called TEXT and it’s used to store information on mipmapping,
not used in this tutorial, as well as texture filtering functions. If mipmapping is
not used then only NEAREST and LINEAR value are accepted for filtering
functions. Usually only LINEAR value is used because it give best result,
remember also that filtering can be separately selected for minification and for
magnification, and magnification filter supports only LINEAR and NEAREST
functions, even if mipmapping is used, this is obvious because there is no other
texture level to interpolate with magnification. In the example project 03-
TexcturedCube press SQUARE button to switch between these two mode, but

remember to move the camera (L1, L2) closer to the cube to well appreciate

27

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

Build DMA packet to send
cube information to GS

Building texture address
vectors

the difference.

Last register related to texture environment setting is CLAMP, used to
set clamping mode. If value outside interval [0.0, 1.0] is used as ST coordinates
on a vertex, GS has four method to determine colour of the texels that lies
outside this range. Default mode is REPEAT, that is used to repeat texture as
if it is tiled onto the triangle, another useful mode is CLAMP, that repeat the
colour at the border, this means that texture address values are clamped to
range [0.0, 1.0]. To see different clamping in action, modify texture coordinate
pressing R1 and R2 and then press CROSS button to alternate between
CLAMP and REPEAT wrapping mode.

DMA packet used by main program to draw the cube is now changed
into source chain mode, first part of the packet contains register texture
settings (TEXO, TEX1 and CLAMP), while last part contains vertices

information. It is interesting looking on how texture coordinate value are

calculated:

if (GS_PRIM_FST_STQ == TexCoordinateMode) {
//Calculate S/W, T/W, 1/W, and store value into DMAPACK
STQ[0] = TextureCoordinates[VertexIndex] [0] * RecW;
STQ[1] = TextureCoordinates[VertexIndex][1l] * RecW;
STQ[2] = RecW;
DMAPacket++->ull28 = * (sps2uintl28 *) STQ;

}

else {

//Calculate texture in UV format,

UV[0] =(int) (TextureCoordinates [VertexIndex] [0]
* TM.Width()) << 4;

UV[1l] = (int) (TextureCoordinates|[VertexIndex] [1]
* TM.Height ()) << 4;

DMAPacket++->ull28 = * (sps2uintl28 *) UV;

When STQ coordinate system is used, S and T value are divided by W
(RecW contains in fact value 1/W), when UV coordinates are used we must
remember that UV coordinates does not range from 0.0 to 1.0 as ST wvalues,
but are expressed in units of texels. Since Texture address for the cube is
expressed in ST coordinate system, value must be converted multiplying
original S and T value for texture dimension. Finally, format of UV coordinates
is expressed in fixed point format, with 12 bit of integer part and 4 bit of
fractional part. To convert between plain integer and this format a simple shift

can be done, dropping fractional part.

3.6 STQ texture coordinates and perspective correction

Why perspective correction
is needed

Texturing process takes place after a triangle is projected on the screen,

28

PS2 - Tutorial Chapter 03 — Texturing @FEH
=

How to correct perspective
distortion on PS2

to find the texel that correspond to each pixel of rasterized triangle, a linear
interpolating process could be used on texture coordinates associated with the

vertices. This usually lead to image artefact because of perspective distortion.

The problem arise because we are doing a linear interpolation of

T -Z

Square to project

/.

Projection plane

»
»

X

coordinates of projected triangle, since projection is not a linear transformation
in R°, this linear interpolation on projected coordinates lead to non linear
interpolation in original coordinates of the triangle. Suppose for example that a

square is positioned in world space in the following location.

Now consider what happens if we do linear interpolation on projected
vertices. Picture now represent the same scene, but viewed from the positive

side of Y axes.

It can be easily seen that linear interpolating projected square, produces
non uniform interpolation on original object leading to artefact in applied
texture. Since this problem was early addressed by Jim Blinn[xx], modern
hardware support a perspective correction algorithm in their internal rasterizer to
help minimize this problem. A simple approach, as found by Blinn and called
hyperbolic interpolation, does not interpolate (u,v) texture coordinate but

coordinate (Y ,%y, %), where W represent homogeneous coordinate of

Projection plane
A

v

-Z

7~ Square to project

/dl

VX

transformed vertex. Playstation2 hardware support this correction with the
using of STQ addressing mode instead of classic UV, where texture
perspective correction is not used. For each vertex the value 1/W must be

calculated and used to multiply original (S, T) texture coordinates, then this

29

PS2 - Tutorial Chapter 03 — Texturing @ tlﬂ
o

Perspective correction at work

value must be stored in Q part of texture coordinate, GS will do the rest of the
process. Looking at the code in main.cpp it can be easily seen this process

during the building of cube data to be sent to the GS.

When data is uploaded to GS, it is necessary that texture coordinate STQ
are sent before the RGBAQ), this because Q component is stored in RGBAQ

register and not together with S, T coordinate value.

To appreciate the usefulness of texture perspective correction press 1.3
when the 03-TexturedCube demo is running, it changes texture coordinate
system from STQ to UV and vice versa effectively enabling/disabling texture
petspective correction. If a pattern of uniform line is used as texture, we can
easily see that when perspective correction is not performed, lines appears not

uniform on triangle border.

Picture on left shows that if normal UV coordinate are used, some errots
happens into rendered image. First artefact consist in discontinuities on lines
on bottom face of the cube, second artefact happens on upper faces, where
lines appear to have different width and different spacing. Picture on the right
shows same geometry with texture correction enabled (STQ coordinates on

PS2), this time the image is rendered without any defects.

For those who are interested in texture perspective correction I suggest
reading the exceptional article of Chris Hecker freely downloadable at

http://www.d6.com/users/checker/misctech.htm.

3.7 Grab the screen on PS2

How to grab screen content,
thanks to Sparky

Preceding paragraph shows some screenshot of the running application,
the question now is: “How it is possible to take screenshot of a running 3D
program?”. The answer is in GS manual and in exceptional code made by

Sparky (http://playstation2-linux.com/projects/sps2demo/). I adapted the

code to work in my application, the hard work is all made by Sparky and I only

30

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

Local to host transfer mode

A class to take screenshot of
running program

How to download a line from
frame buffer

done little modification to make the routine simpler to use. Code itself it is well

commented so lets have a little briefing on how this routine works.

First of all GS manual section 4.2 deal with transfer data to and from
GS, this is all is needed to know to do a screenshot. First of all it is necessary
to know how to handle signals such as FINISH, this is done reading
ps2dev_ioctls_en.txt documentation file. Transfer from host to GS memory was
already be explained in preceding paragraphs regarding how to send a texture
to GS; grabbing screen content is very similar because it is simply a transfer
from GS memory to Local memory, but code that does that is more
complicated respect texture uploading code, because some problems must be
solved. First problem consist in the impossibility to use DMA channel 2
(transfer to GS), because it works only 70 GS, to make data flow from GS to
memory, channel 1 is to be used, so data pass through VIF1 that is directly

connected to.

All the hard code is contained in a class called ScreenShot, in function
DownloadV ram() originally made by Sparky. Original version use a lot of helpful
class included in sps2Demo, the version inside the class is adapted to run
alone, so it is very easy to include in own project. Just add Screenshot.h and
Screenshot.cpp and the work is done. To take a shot, create a ScreenShot
object passing sps2descriptor to the constructor and then take a shot after
screen swapping with member function TakeShot(). Remember to pass valid
filename (file generated is a targa uncompressed so it’s best if the file ends with
“tga”) and optionally the type of frame buffer, PAL or NTSC, remember that
the function is defaulted to NTSC. Here it’s a typical use, extracted from
example 03-TexturedCube:

sps2UScreenSwap () ;
if (Joy.Button(R3).State == Pressed) {

static int ShotIndex = 1;

char buffer[255];

sprintf (buffer, "./Shot%3d.tga", ShotIndex++);
SH.TakeShot (buffer, NTSC);

It is clear that using this class is very simple. Now take a look deeper into
the operations needed to grab data from frame buffer. The code download a
line at a time, so all data fits into a single page of ram, routine TakeShot() then
reads all the lines of the frame buffer and build a simple uncompressed targa
image that is very easy to build. Consulting paragraph 4.2 of GS manual it can
be seen that transferring data from Local Buffer to Host consist of 7 step, step

1 through 4 talk about accessing the FINISH register of GS’ and wait for

7
“access a register” actually means write any value into it, usually value zero is used.

31

PS2 - Tutorial Chapter 03 — Texturing @Fﬁlﬂ
=

FINISH signal (FINISH bit of CSR register become 1), then set transmission
parameters. To access FINISH a simple A+D addressing can be used but
remember that to access FINISH signal, ioctl() must be used. First of all a VIF
header must be build to instruct the VIF to send data to GS:

pDmaMem[0] = 0; //NOP;

pDmaMem[1] = 0x06008000; //MSKPATH3(0x8000); Disable path 3
pDmaMem([2] = 0x13000000; //FLUSHA;

pDmaMem[3] = 0x50000006; //DIRECT (6);

Direct(6) means that 6 qword of data are to be transferred to GS, these
qwords are: 1 GIFtag specifying 5 A+D registers, and the four transmission
registers as seen before plus FINISH register. Before actually send the packet
to the VIF, we must first enable reading of FINISH event:

ioctl (eventfd, PS2IOC_ENABLEEVENT, PS2EV_FINISH);

ioctl (eventfd, PS2IOC_GETEVENT, PS2EV_FINISH);

.. //Packet is send

ioctl (eventfd, PS2IOC_WAITEVENT, PS2EV_FINISH);

First line actually enable intercepting the FINISH event while the second
clear the FINISH bit of CSR. After the packet is sent to VIF wait for the
FINISH event.

Point 5 tells to set 1 into the privileged register BUSDIR, this reverse the
direction of data from local memory to host, then read data and finally set
again 0 in BUSDIR to restore direction setting. This is enough, but remember
that, at the end of DownloadVram routine, it is necessary to enable again path
3 that was disabled at the beginning of the routine and finally enabling again
PS2EV_VBSTART event that gets disabled when ioctl() is used to enable
FINISH event.

Now screen content can be grabbed and used as screenshot.

32

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

4 Vector Units

4.1 VUO in Macro mode

What are those Vector units?

Using VUO as a coprocessor
CcoP2

Gcce assembly syntax

Real power of EE processor lies on vector units VUO and VU1, two
powerful math processors especially designed to operate on typical data of
computer graphics at increased speed in respect on using a general purpose
processor. These processors are able to execute SIMD (Single Instruction on
Multiple Data) instruction working on packed vector data, consisting 4 float
values packed together in a single 128 bit data. Internal structure of EE is
discussed with great detail in Playstation 2 manuals, so in this chapter it’s
assumed that the reader read at least EE and VU manuals and knows internal

structure of PS2 console.

To familiarize with the instruction set of Vector Units it is possible to
use VUO in macro mode. VUO is tightly coupled with EE core and can be wsed
as COP2 math coprocessor. When operating as coprocessot, the user can access its
internal registers and instructions directly with inline assembly embedded into
C++ code. Since most important instructions can be used in macro mode it is
worth an overview to understand basic concept of VU before moving on Micro

Mode that shows the real power of Vector Units.

Before actively examine VUO macro mode code, a little overview of
GCC inline asm syntax is needed, especially for those used to work in
Windows environment. Since inline asm must often work with variable
declared in C/C++ code, GCC has a special syntax that makes possible to
access a variable in inline asm code independently of machine or environment
used. It is well known that layout of the stack is not the same in Windows and
Linux system, and it can differ even with compiler options, such as
optimization. This makes accessing C/C++ declated variable not portable and
difficult, gcc solve this problem with the use of particular syntax structure that
specify to the compiler the variable that are used inside the asm block. As an

example this is a simple inline asm block consisting of a single instruction:

int x = 1;

int y = 2;

int result = 0;
asm ("

mul %0, %1, %2
nWeN=pn (result) cpn (x) , nen (y)) g

This fragment of code simply declare 3 C++ variables and use them into
a block of assembly language composed by a single instruction, a

multiplication. The asm block is enclosed into “...”, this means that asm block

33

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

finish at the beginning of the last line, then a colon is present to state that
variables list begins. After the first colon the expression “=r” (result) specify
to the compiler that the variable result is used as output variable, its name into
asm block is %0 since it’s the first variable declared in the list. Gee manuals
specify in fact that after the first colon list of output variable has to be placed.
Character r specify to the compiler that variable is an integer value so integer
store has to be used to store data on it. After output variables list another
colon delimits the beginning of input variables list. Each of these two blocks
can contain mote than one entry separated by comma character. Input variable
list is similar to the output variable list, just remove ‘=’ character from the
declaration.

Variable name in asm block is composed by a ‘%’ character followed by
the index with the variable appears in the final output/input variable list. Both
output and input variables are considered to form a single list so variable x hae
name %1 in asm block. The whole block takes the name of assembler instruction

template, for more details consult online GCC documentation freely

consultable at http://gcc.gnu.org.

4.2 Some vectors and matrices operations in VU0 macro mode

Some math with COP2 (VUO) Most obvious operations that can be executed with VO are packed math
operations, as example this is the code to calculate sum of two vectors:
float V1[4] QWALIGN = {1.0f, 0.0f, 1.0f, 1.0f};

float V2[4] QWALIGN {2.0£, 2.0£, 0.0f, 1.0f};
float V3[4] QWALIGN = {0};

//Sum two vectors
asm _ volatile_ ("

lgc2 vfl, 0(%0)
lgc2 vf2, 0(%1)
vadd.xyzw vf3, vfl, vf2
sgc2 vEi3, 0(%2)

M. . o Mpw (v1), "y (vz), LR (V3));

First of all three vectors are declared as simple array of 4 float element
with simple C++ syntax, remember that to load these value into VO registers
with /ge2 instruction data are to be 16 byte aligned in memory. A simple macro
called OW.ALIGN is used to apply __attribute__((aligned(16))) attribute to the
three arrays. To use C++ variable in asm block the assembler instruction
template list states that V1, V2, V3 are three input variable labelled respectively
%0, %1 and %3 in asm block. Even if V3 is used as output variable it is

declared as input ones, moreover all three variables are declared as integer

34

PS2 - Tutorial Chapter 04 — Vector Units

Vector Cross Product with

COP2

Matrix product with COP2

k"

specification). This is done because into the asm block only the

3

number (“r
addresses of the three vectors are used not their contents and the address is a
simple integer number. In fact %2 is never used as destination operand so it is
effectively an input value. Asm code is straightforward, first of all content of
V1 and V2 are loaded into VUO registers off/ and zf2 respectively, then
instruction sass.xyzw is used to compute the sum and the result is stored back
with sqc2 into main memory. With this simple block the sum of two
homogeneous vectors® can be performed with a single instruction (not

counting loading and storing ones).

Instruction set supported by Vector Units is expecially designed to
handle homogeneous (4 component) vectors and affine transform expressed
by 4x4 matrix, in this paragraph we will see how to implement with VUO basic

math functions operating with vectors and matrices.

Before looking on how to implement dot product between two vectors,

lets look at the code used to perform cross product:

asm __volatile_ ("

lgc2 vEl, 0(%0)
lgc2 vE2, 0(%1)
vopmula.xyz ACC, vfl, vf2
vopmsub.xyz vE3, vi2, vfl
sqgqc2 vi3, 0(%2)

oo Mr" o (V1), "r" (v2), "r" (V3));

only two instructions are needed since vompula and vopmsub instructions
are especially designed to handle vector cross product. Remember to write
down ACC in uppercase because gcc does not compile the code if this

requirement is not met.

Now lets move to matrices multiplication, used to compose two or more
transformations into one. Since this operation is very common in 3D computer
graphics programs, VU have a special set of instructions that make possible to
perform this operation with only 12 instructions. First of all lets examine how

the two matrix are declared:

float matl[4][4] = QWALIGN {{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12},
(13, 14, 15, 16}};

float mat2[4][4] = QWALIGN{{0.1, 0.2, 0.3, 0.4},
0.5, 0.6, 0.7, 0-8},
10,9, 1.0, 1.1, 1.2},
i3, 1.4, 1.5, L6}

A matrix in memory is nothing more than 16 float elements stored

8 This is true if the w component of both vectors have the value one. Ex: V=(2, 0, 0, 2), W = (0, 2, 0, 2) and V+W = (2,2,0,2) that is

different from (2,2,0,4).

35

PS2 - Tutorial Chapter 04 — Vector Units

How to use broadcast
instruction

k"

together as a linear array, one element after the other. Now lets review how

matrix multiplication is done.

ay, @, a5 a, % by by by
Ay Qgy Gyy Gy || by Dy by by
Ay Qg Qg3 Gy || by by, by by
a a Q, a,,

41 42 43 44 b41 b42 b43 b4

4
Kaubn ' a13b31 T a’14b41 }lublz ' a’13b32 + a14b42a
a11b13 a12b23 i a’13b33 + a'14b43’a11bl4 a12b24 + a13b34 it a’14b44

In above expression only first row of the resulting matrix is represented,

because all the other are calculated in the same way. Since multiplication is
made row by column it is difficult multiplying together first row of left matrix
with first column of the second matrix because it is impossible to store first
colum of second matrix into a VO register with a single load instruction.
Moreover, even if data in memory will be reorganized to make this possible, at
the end of this multiplication we will end with the four elements marked with
blue stored into the components of one register and then we have to sum them
together to find first element of destination matrix. This is call horizontal
addiction (adding together four values contained in a register) and it is not

performed with a single instruction another way must be found.

Looking at the element marked with red we can notice that they are a
vector obtained multiplying each element of the first row of mat2 with the
clement a,; of matl. Looking at the element in green we see that this vector is
obtained multiplying each element of the second row of mat2 for the element
a,, of matl, analog things happens for vectors marked with yellow and orange.
First row of result matrix it is obtained by a simple sum of these four vectors.
To accomplish this task VU’s are equipped with mulbe (broadeast product) and
maddbe (broadcast product sum) instructions. These instruction permits to multiply
all component of a register for a single component of another register, instead
of multiplying each component with the corresponding one as for a normal
mul. Since a chain of multiplication and addition is to be done, the

accumulator register is used to avoid stalling the pipeline.

vmulax ACC, rs, rt.x

127 96 95 64 63 32 31
rs RS3 RS2 RSI1 RSO
127 96 95 4 63 32 31
rt RTO
127 96 95 64 63 32 31
ACC | RS3*RTO RS2*RT0 RS1*RTO RSO*RTO

36

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

With vmulax we can store in acc register all the elements marked in red
into accumulator register with a single instruction, supposing matl is stored

into vfl-vf4 registers and mat2 is stored into vf5-v{8 registers.:
vmulax ACC, vEs, vil

now it is sufficient to use multiply and add instruction to calculate green
clements and adding at the same time with the content of the accumulator
register, then the same for yellow and orange elements. Last instruction store

the result in vf9 register.

vmadday ACC, vfo, vil
vmaddaz ACC, vET, vil
vmaddw vf9, vEsg, vil

It is very important to notice that the result of the first instruction is
used by the second instruction, this would normally cause a stall of the pipeline
if the result would be stored in normal register. This would happens because a
mul operation has a throughput/latency of 1/4. The use of accumulator
register avoid this problem because accumulator registers are often
implemented into the core of the ALU itself as temporary register, when an
instruction has Acc as destination register, the result of the operation is stored
into the Acc register immediately after the result is ready, so next instruction

can use it. The others rows of matrix result are calculated in the same way.

4.3 Horizontal add and transforming a vector.

Needs for horizontal adding
register components

To calculate dot products between two vectors we have to use a normal
vmul operation but then we have to perform an horizontal addiction that is
calculate the summation of the first three component of a vector’. This
operation is not present in VU’s instruction set, but can be easily done with

broadcast add, even if this is not so efficient:

vmul.xyzw vE3, vfl, vf2
vaddy .x vi3, vE3, v£f3
vaddz.x vf3, vE£3, vi3

first instruction do normal multiplication between vector components
then the second instruction means: multiply component of vf3 by the y component of

vf3 with a broadcast, but execute this operation only for x component of the vectors.

° This is true only if w component of both vectors have the value 1.

37

PS2 - Tutorial Chapter 04 — Vector Units

Horizontal add with broadcas

instructions

How to transform a vertex

vaddy.x vf3, vf3, vf3
127 9 95 64 63 3231 0
vi3 W Z Y X
127 96 95 4 63 3231 0
vi3 W Z Y X
127 96 95 64 63 32 31 0
vf3 A\ Z Y X+Y

The y in the instruction indicate the register component to broadcast,
then dot separate instruction from the mask component list, this means that
only x component will be update. With this instruction VU0 execute the
operation only for the x part of the registers, ignoring remaining 3. The second
vaddz.x instruction store the result of dot product in the x part of vf3. If a
complete horizontal addition is to be done, vaddw.x is last instruction to be
used. From this example we see that to execute an horizontal add three add
instructions must be used, this means that there is no speed up using VU’s
respect to normal floating point unit. Consider also that the above sequence of
instructions cause a stall into the pipeline of VU0 because we must wait for the
first vmul instruction to be completed (4 clock ticks) before using vaddy

instruction.

Now it is time to examine one of the most important operation executed
on vectors, vertices transformation. To transform a vertices a multiplication

between a matrix and a vector is to be done, lets review how it is done:

w

a v, + (1,12’[}?/ + a3, +a,v

(U, F Ao, + Ay, + Gy 0,

/U.’I?
v,
v, AU, + A5, + agyv, + ag,0,
v

ayv, +auv, +a,v, +a,v,

w

First of all we must consider that even if vector is a column vector, its
layout in memory is linear making it possible to multiply together first row of
the matrix with vertex, then an horizontal add with storing the result in x
component will complete the first component of transformed vertex. This
sequence of operation has to be repeated for the other three components of
the vertex. This is not so efficient because we had seen that horizontal add is
not efficiently handled by VUO, remember also that this operation is critical
because it has to be done for all the vertices that make a scene. It is necessary

to find an alternative way to do this operation.

If we use row vector notation as DirectX do, transforming a vertex has

now this form:

38

PS2 - Tutorial Chapter 04 — Vector Units @h}ﬂ
=

Switching between column
and row vectors

MMI solution, swizzle and add

Vector units solution,
broadcast to add

It is clear that this operation is equal to the first part of matrix
multiplication, leading to only four VU’s operations and great execution speed.
This means that it is better to use row vector notation but for those who prefer
to use column vectors, that are more mathematically correct, it is worth to
notice that to obtain transformation matrix for row vector notation from the
transformation matrix used in column notation a simple transpose operation is
needed. This makes possible to use column notation throughout whole

program and transpose transformation matrix before sending it to VUs.

To understand the difficulty of transforming a vector using column
notation directly into vector units it is possible to examine code contained in
main.cpp of 04-MacroMode example. Two possible implementation are presented
there, both of them not very efficient. Both begins with the multiplication of
the vector with the four rows of the matrix in register $8-311, then an
horizontal add is to be done for these four vectors. Horizontal add of $8
represent x component of transformed vertex, horizontal add of §9 is the y

component and so on.

One solution consist in moving these vectors to main memory, use
swizzling algorithm with MMI'" to transpose the component and finally a
simple vadd is enough to find result. This method is not efficient because data

are to be passed from VUO to EE core and then to VUO again.

A different approach is used in the second solution that is completely
done in VUO since we have seen before that broadcast add can do horizontal
add. It is important now to store each horizontal add in the corresponding part

of the register.

vaddy . x vig, vEsg, vi8 #Begin HorAdd of vf8 in x
vaddx.y vf9, vi9, vi9 #Begin HorAdd of vf9 in y
vaddx. z vflo, vflo, vil0 #Begin HorAdd of vfl0 in z
vaddx .w vfll, wvfll, vfll #Begin HorAdd of vfll in w
vmr 32 vfl, vi0 #store (0, 0, 1.0, 0) in vfl
vaddz . x vis, vEs, vi8

vaddz.y vfo, vf9, vi9

vaddy.z vfl0, vf£f10, vfl0

vaddy .w vfll, wvfll, vfll

vmr 32 vz, vl #store (0, 1.0, 0, 0) in vf2
vaddw . x vis, vEs, vi8

vaddw.y vi9, vi9, vi9

vaddw. z vfl0, vf10, vfl0

10 This algorithm will be discussed in detail in the next paragraph

39

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

Masking and adding.

vaddz.w vfll, wvfll, vfll

vmr 32 vi3, vE2 #store (1.0, 0, 0, 0) in Vv£3

Since we have to do 4 horizontal adds, we can interleave them to avoid
stall, we see in fact that register v£8 is accessed another time after 5 instructions
avoiding stall. Various »#r32 instructions are used to calculate constant (0, 0,
1.0, 0), (0, 1.0, 0, 0) and (0, 0, 1.0, 0) from the value in constant register v{0 (0,
0, 0, 1.0). These value are needed because at the end of horizontal adds, in
register v{8 the value of horizontal add is stored in x component but the other
components contains old values that are not necessary anymore. A possible
solution to this problem is multiplying v{8 by vector (1.0, 0, 0, 0) to maintain
only the x component. Same thing happens to the other three registers. Finally
to compute transformed vertex it is sufficient add together v{8-vfll while

multiplying for the various constant vector to eliminate unwanted component.

vmula.xyzw ACC, vfll, vfo0

vmadda .xyzw ACC, vfl0, vfl

vmadda .xyzw ACC, vfo, vi2

vmadd.xyzw vfl2, vf8, vE3

Even if this algorithm can be interesting and can help to understand
Vector Units it is clear that using row vector to use only four instruction is

highly preferable.

4.4 Multimedia registers to transpose a mattix

Fast transposition of a
matrix

The “swizzling” operation

As we see in previous paragraph it is more convenient to use row vector
notation perform vertex transformation with only four instruction in 1V ector Units.
Since this tutorial does not concern speeding up code to the limit, to maintain
a correct mathematics notation column vector is used through the text. To
avold making excessive complicated VU code all transformation matrices are
transposed before they are uploaded to Vector Units. To perform a fast
transposing, Multimedia Instructions comes at hand because they permit to
transpose a matrix with only 8 instructions. To understand how the code

works lets before have a look at the various packing instructions.

First of all we must load matrix elements into 4 128 bit registers with the
instruction LQ (Load Quadword), in this way matrix rows are loaded in
registers §8, $9, $10 and $11.

1q s8, 0(%0)
1q $9, 16 (%0)
1q $10, 32(%0)
1q $11, 48(30)

Now using packing instruction pexthy, pextuw, pepyld and pepynd we will

40

PS2 - Tutorial Chapter 04 — Vector Units

k"

perform an operation known as swigzling, consisting essentially in transposing a
4x4 matrix. This operation is used in more general situations to transform data
layout from AoS (array of structure) to So4 (Structure of array). At this time
we are not interested into real meaning of the swizzling operation and it is

sufficient to know that is the same thing of transposing a matrix.

Packing instructions: pextiw First of all examine the instruction pextlw (Parallel EXTend Lower from
Word) that operate with two source 128 bit register mixing word values into

another 128 bit destination register as represented in following picture.

pextlw rd, rs, rt

Packing instructions: pextuw

127 96 95 64 63 3231

rs RS3 RS2 RS1 RSO
127 96 95 64 63 3231

rt RT3 RT2 RT1 RTO
127 96 95 6463 3231

rd RS1 RT1 RSO RTO

Instruction pextuw (Parallel EXTend Upper from Word) operate in

similar fashion:

pextuw rd, rs, rt

127 96 95 64 63 32 31

rs RS3 RS2 RS RSO
127 96 95 64 63 32 31

rt RT3 RT2 RT1 RTO
127 96 95 64 63 3231

rd RS3 RT3 RS2 RT2

Even if these instruction seems strange and not so useful, they are
especially implemented to do multimedia operation such as swizzling. To
understand how these instruction are used we will now examine the swizzling

operation with great detail.

?gg;gﬂiﬂer loading 127 96 95 64 63 3231 0
$8 4 3 2 1
127 96 95 64 63 3231 0
$9 8 7 6 5
127 96 95 64 63 3231 0
$10 12 11 10 9
127 96 95 64 63 3231 0
$10 16 15 14 13

41

PS2 - Tutorial Chapter 04 — Vector Units

k"

After the four load (lg) instructions the whole matrix is loaded in four
registers. Exact content of the register after loading operation is represented in
the picture in previous page. Using parallel extend instructions it is possible to

begin the swizzling operation with these four instructions:

pextlw $12, $9, $8
pextuw $13, s$9, $8
pextlw $14, s11, 510
pextuw $15, $11, $S10

After this operation matrix data is transferred to registers $12-$15 and

swizzle operation is begun. Content of registers is now the following.

Register after the first part of

the swizzling 127 96 95 6 3 32 31
$12 6 2 5 1
127 96 95 64 63 32 31 0
$13 8 4 7 3
127 96 95 6 3 3231
$14 14 10 13 9 j
127 96 95 64 63 3231 0
$15 16 12 15 11

Packing instructions: pcpyld Now, recalling that first row of transposed matrix is the vector (1, 5, 9,

13) we can notice that it is now decomposed into two separate parts
highlighted in red. It is time to use pgpy/d instruction to reconstruct first row of

transposed matrix.

pepyld rd, rs, rt
127 64 63 0
rs HIGHS LOWS
127 64 63
rt HIGHT LOWT
127 64 63
rd HIGHS LOWT

Instruction pepyld operate in similar fashion and it used to build second

row of transposed matrix, composed by the two parts highlighted in blue. It is

now possible to obtain final matrix with the instructions:

pcpyld
pcpyud
pcpyld
pcpyud

$8,
89,

$10,
$11,

$14,
$12,
$15,
$13,

42

$12
$14
$13
$15

PS2 - Tutorial Chapter 04 — Vector Units @ g.ﬂ
o

End of swizzling operations

4.5 Micro Mode

using Vector Units as
separate processor

Direct connection between
VU1 and GS, PATH1

now final content of $8-§11 registers is:

127 96 95 64 63 32 31 0
$8 13 9 5 1

127 96 95 64 63 3231 0
$9 14 10 6 2

127 96 95 64 63 3231 0
$10 15 11 7 3

127 96 95 64 63 3231 0
$10 16 12 8 4

This is exactly what we wanted, our original matrix transposed.

Real power of vector units shows up in Micro Mode, moreover, VU1
can only work in micro mode and this is the only way to use it. Micro Mode
consist in uploading code into VU micro memory, then upload data into VU
memory and start the execution of the microprogram. In this way vector units
are used as a separate processors, even if they are contained into EE. Micro
mode makes EE core free to do other stuff while VU works on vector data,
making the application runs faster. In the example 04-MicroMode a simple VU1
program, that transforms the vertices of the cube, is uploaded into VU1

avoiding to transform each vertex with EE core.

VUT1’s main difference from VUO is the direct connection with the GS,
called PATHI. The presence of PATH1 means that VU1 can directly
communicate with GS, sending data using XGKICK instruction. Lets see why

this direct connection is necessatry

Input data of VU1 for this example are: transformation matrix and vertices
data (coordinates, colors, texture STQ coordinates), these data ate transformed
by VU1 executing uploaded micro code and finally output data must be sent to
the GS. It would be source of great inefficiency if output data must be moved
again into main memory to do transfer with EE core as seen before. To avoid
this the XGKICK instruction it is used to send a GS primitive to GS directly
from VU1 memory. This means that main application has only to send vertices
data to the VU1 and then start execution of microprogram, this is enough to
make cube be rasterized on screen. Now it is time to look at how VU1

microcode is build.

ASM code for micro mode is a little strange at the beginning, this

43

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

Upper and lower execution
units

Compiling .vsm files

because for every instruction, two opcode are needed, one for the upper unit
and the other for the lower unit. This happens because Vector Units are
composed by two distinet units (upper and lower), each of them having own
instruction set. With this architecture VU is able to perform two different
instructions at the same time, achieving great performances. To give to the
reader an idea on how micro code looks, it is showed, as a short example, the

beginning of the microprogram included into the example 04-MicroMode:

NOP [D] IADDIU VIO1l, VIOO, O

;Load Transformation matrix

NOP LOT VFO01l, (VIOl++)
NOP LOT VF02, (VIOl++)
NOP LOT VF03, (VIOl++)
NOP LOT VF04, (VIOl++)

Only lower execution unit is used in this snippet, witch purpose is
loading transformation matrix into the first four floating point registers of
VUI. This code will be explained later in great detail, now it is time to focus on
various aspect of micro mode, ranging from compiling code, to uploading

binary code into VU1 micro memory.

To compile a program written in Micro Mode Assembly we can use the
assembler ee-dyp-as that comes with the kit. A little problem is that this tool
create an object files filled with extra stuff that must be removed to upload
code to the VU1. This happens because an object file contain usually more
information than plain binary assembled code, such as symbols, header
information and so on. To strip out all unwanted information we must use
objegpy tool, used to manage content of object files. This utility strips out
everything that is not useful to us, leaving only rea/ binary code for VU1. This
operation can be automated into makefile do be done automatically:

Rule for compiling .vsm —> bin

.vsm.bin:

ee-dvp-as -0 $*.vo_ S$*.vsm
objcopy —-Obinary $*.vo_ $*.bin
rm $*.vo_

First of all obj file is assembled by the ee-dvp-as assembler generating
object file with extension .zo_, then objeopy analyze structure of the file and copy
only part of the file regarding binary assembled code into a new file with
extension .4in. The option to do this operation is —Obinary that means: “copy
only binary part of the object file”. Now resulting .bin file contains only
assembled binary code for VU1 and can be directly read and uploaded into
VU1 by the main application. Another way to proceed is using bin2as tool to
convert bin to an assembly file that can be assembled by standard linux

assembler as, making possible to include object file directly into the

44

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

4.6 VIF Packet

DMA transfer to and from
Vector units

Uploading Micro Code MPG
ViIFcode

Transfer code with a
VIFpacket

application. I prefer working directly with bin files, avoiding to store binary

Vector Units microcode directly into executable file.

To communicate data from EE to Vector Units a DMA transfer is
needed. Rules to make DMA packets for GS are still valid, but with a different
organization, there is no more GS primitives but IIF packets, formed by a 32
bit "IFcode followed by some data if needed. VIFcode is basically different
from GIFtag because it does not only contain information on data that has to
be sent to the VU, but can contain also commands that are executed by the
VU. VIFcode is 32 bits long and since it can contain meaningful information
by itself (not followed by any other data) there is the possibility to insert two
VIFcode into upper 64 bits of DMAtag in chain transfer mode and transfer
them together with DMAtag itself, providing to instruct DMAC to not discard
DMAtag during data transfer. Details on how to do this kind of transfer can be

found in EE manual.

To use Vector Units in micro mode first thing to do is upload microcode
to micro mem of the VU that is to be used, this is easily accomplished by a
FIVPacket with MPG “IFcode at the beginning of the packet, followed by
binary data representing assembled code. It is also possible to read the code
directly into VU1 memory, this because micro mem of VU1 is memory
mapped into the address space of the EE.

FILE *VUlCode;

VUlCode = fopen ("BasicTransform.bin", "rb");
if (NULL == VUlCode) {

cout << "Unable to open BasicTransform.bin...Exiting\n";
exit (5);

j.nt CodeSize = fread(VU1_MICRO_MEM, 1, 4096, VUlCode);

fclose (VUlCode) ;

This is simple but not the preferred way to upload code into VU1, this
mainly because all transfer should be regulated by DMAC, moreover the VU1
must be in idle mode to permit direct access from the EE. It is surely most
interesting sending the microprogram with a DMA packet, moreover the code
for this example is very short and fits all into a page of ram avoiding the need

to do stitching of the packet.

First quadword of DMA packet will contain DMATag as well as MPG
VIFeode so at the beginning of the SendMicrocodeTol”UT () routine, two pointer

are declared:

45

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

Insert VIFcode directly into
the DMAtag QWord

PS2_QWORD *DMAHeader = (PS2_QWORD *) DMAPackAddress->pvStart;

PS2_QWORD *DMAPacket = DMAHeader + 1;

All assembled code is read from the file directly into the memory pointed
by DMAPacket and size of code in bytes can be simply obtained by the fread

function return value.
int CodeSize = fread(DMAPacket, 1, 4092, VUlCode);

Now data is filled into the packet, and size of the data is known, this
makes possible to build DMAtag and MPG VIFcode.

DMAHeader->ull28 = PS2_DMA_SET_HEADER((CodeSize + 15) >> 4,
0, DMA_ID_SOURCE_END, 0, 0, 0);

DMAHeader->ul32[2] = 0;

DMAHeader->ul32([3] = PS2_DMA_SET_VIFCODE (0, CodeSize >> 3,
VIF_CMD_MPG) ;

Size of DMAPaket is the smaller number of QWord that contains all
code, so a little calculation has to be done, remembering that CodeSize is
expressed in byte and a shift of 4 bit makes a division by 16 to find size in
QWords. Remember also that ee-dvp-as compiled code is multiple of 16 bytes,
this because even if the instruction are a odd number, a pad of all zero is

inserted, this makes us sure that code will fill an integer number of QWord.

After DMAtag is build, word number 3 is zeroed because it must contain
a NOP VIFcode to guarantee alignment'', then fourth word will contain MPG
VIFcode that tell VIF to upload following data into Micro Memory, starting at
address zero. Size of the code must be given in unit of instructions, since every
instruction is a DWord long, a simple division by 8 convert from byte units to
DWord units. Now it is possible to start transfer in chain mode in the usual

way as seen for preceding examples.

4.7 Sending data and executing the code.

Send Data to Vector Units

Before examining Micro Code of the example it is necessary to know
how to send data to the VU1 and start the execution of loaded microprogram.
In this example VU1 performs only vertex transformation and STQ texture
coordinate calculation, remember in fact that original S and T value must be
divided by value 1/W tesulting from vertex transformation. To transform the
vertices, VU1 needs to know transformation matrix and since we know that it
is preferable to use row vector notation and main program use column vector

notation, transformation matrix has to be send in transposed form. Then, since

11 Check the EE manuals MPG VIFcode alignhment requirements for further information.

46

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

VU1 mem (16Kb) after
data uploading

Transformation
Matrix 4
GlFtag 1
Vertices
Coordinates
14
Vertices
Colors
14
Texture
Coordinates
14

Beginning a V4_32 data
transfer to Vector Units 1

Adding VIFcode to DMA

header

VU1 has to kick vertices data to GS, it needs to prepare a GIFtag to build a
GSPrimitive in VU1 memory. This is required because kicking a primitive
actually means sending a GS primitive stored in VU1 memory. Since we know
in advance the structure of vertices, we can calculate GIFtag in main
application and send it to VU1 immediately after transformation matrix data.
Then cube vertices data must follow, beginning with coordinates and
prosecuting with colors and texture coordinates. Since we do not use double
buffering for this first example, all these data are stored starting from the
address 0 of VU1 internal memory. Layout of memory after uploading is

showed in picture.

All these data must be stored into a single VIFPacket, and since all of
them are QWords it is possible to do a single transfer with UNPACK VIFtag
of 174_32 structure. To make transfer simpler, DMAtag is transmitted during
DMA transfer, this permits to put two VIFtag together with DMAtag in the
tirst QWord of whole DMA packet, in this way all the other v4_32 data will
follow.

int VertexNum = sizeof (Cube) / sizeof (*Cube);
int VIFPacketSize = 4 + 1 + VertexNum * 3;

DMAPacket->ull28 = PS2_DMA_SET_HEADER (VIFPacketSize + 1, 0,
DMA_ID_SOURCE_END, 0, 0, 0);

DMAPacket->ull28|= (sps2uint128) PS2_DMA_SET_VIFCODE_UNPACK (0,
VIF_UNPACK_SIGNED, VIF_UNPACK_TO_ADDR,
VIFPacketSize, V4_32) << 96;

First of all the application must know the size of VIFPacket, this value
is equal to the size of the matrix (4 QWord) plus size of GlFtag (1 QWotd)
plus size of all data regarding vertex. This last value is equal to number of
vertices times 3 (coordinates, colors and texture coordinates component). The
size of DMA packet is 1 QWord longer, this is done because we have to
transfer other two VIFpakets. Layout of the first QWord of DMAPacket after

PS2_DMA_SET_HEADER is the following.
127 96 95 64 63 0

0x00000000 | 0x00000000 | DMA CHAIN TAG (END)

After the DMA header is set, upper 64 bits of the DMA tag are cleared
to value zero, this is important because value zero represents NOT 11Fzag.
Now another macro is used to build the UNPACK VIFcode, since double
buffering is not used VIF_UNPACK_TO_ADDR is specified, meaning that
the address passed as first parameter is an absolute address. Data type are
V4_32 and starting address is location 0 of VU1 memory. This VIFcode has to
be shifted by 96 and combined with o7 previous content of DMA header. This
makes VIFcode fitting the fourth Word of DMA header as represented in

47

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

Starting microprogram after
data are sent

4.8 Microprogram

Vector Units first
microprogram

figure.

127 96 95 64 63 0

UNPACK NOP DMA CHAIN TAG (END)

When DMA transfer start, DMAC must be instructed to transfer DMA
tag together with the data, this means that first VIFcode (NOP) is the first
thing passed to VIF1, then UNPACK code comes and VIF1 now waits for
data to come.

DMAPacket++;
//Put matrix into the packet

DMAPacket++->ull28 = *(sps2uintl28 *) TransformationMatrix[O0];
DMAPacket++->ull28 = *(sps2uintl28 *) TransformationMatrix[1l];
DMAPacket++->ull28 = *(sps2uintl28 *) TransformationMatrix[2];
DMAPacket++->ull28 = *(sps2uintl28 *) TransformationMatrix[3];

This is the data of transformation matrix that follows DMAtag into
DMA packet, then GIF tag is build and inserted into the packet and finally
vertices data. After all the data are stored in VU1 memory it is time to start the
execution of the microprogram, this is done with MSCAL 1/1Fcode, but
remember that before starting to execute the code a FLUSH 1"IFcode must be
send to be sure that loading of data in Vector unit memory is completed.

These two VIFcode are sent immediately after texture coordinate data:

DMAPacket—->ull28 = 0;
DMAPacket->ul32[0] = PS2_DMA_SET_VIFCODE_FLUSH;
DMAPacket—->ul32([1] = PS2_DMA_SET_VIFCODE_MSCAL(0) ;

First of all the whole QWord is reset to value zero, then it is sufficient to
put the two VIFcode in the right order, first the FLUSH to wait for loading
operation to finish, then MSCAL VIFcode that actually starts the
microprogram at the address 0 into VU1 Micro Memory.

127 96 95 64 63 32 31 0

NOP NOP MSCAL 0 FLUSH

Finally it is time to examine file BasicTransform.vsm that contain assembly
code for the microprogram that transform the vertices. First of all
transformation matrix is load into the first four registers of VU1 then number
of vertices is retrieved by the NLOOP field of the GIFtag that come with the
data:

NOP ILWR.x VI02, (VIOl)x
NOP IADDIU VIO3, VIOO, Ox7fff

48

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

Storing pointer to input data

Loop that transform the
vertices to produce output

NOP IAND VIi02, VIO3, VIO2

Since VIO1 contains pointer to the GIFtag, /wr instruction load first
Word of GIFtag into VIO2 register, then a simple mask is build to mask out
NLOOP part, the result is number of vertices stored in VU1 memory. Then is

time to calculate address of vertices, colors and texture coordinates:

NOP IADDIU vIi1i0, vIOl, 1
NOP IADD VIll, VI10, VIO2
NOP IADD VvIl2, VI11l, VIO2
NOP IADD VI13, VI12, VIO2
NOP IADDIU vIio4, VvI13, 1
NOP IADDIU VIO5, VI13, 2
NOP IADDIU VIiOe6, VI13, 3
NOP LQ VFS5, 0(VIO1)

NOP SQ VF5, 0(VI13)

First of all adding 1 to VIOl we store in VI10 the pointer to the first
vertex, then adding number of vertices to this register make possible to obtain
pointer to first color vector. Same thing happens for texture coordinate. After
all input data pointer are calculated, output data pointer must be found.
Output data is stored immediately after input data so adding the number of
vertices to texture coordinate pointer (VI12) produces address of first free
memory address, here GIFtag will be placed and all vertices data will follow.
V104 store pointer for output texture component, VIO5 will store pointer for
colors and finally VI06 store pointer for XYZI2 coordinates. Remember from
chapter 3 that is very important that texture data comes before color data.
Finally GIFtag is moved to output location. Now main loop begins and it is

executed for each input vertex data..

NOP LOI VF10, (VI10++) ;load vertex
NOP LOI VF11l, (VI1l++) ;Load Color
NOP LQOI VF12, (VI12++) ;Load texure

;Apply transformation matrix.

MULAx.xyzw ACC, VF01l, VF10x NOP
MADDAy .xyzw ACC, VF02, VF10y NOP
MADDAz.xyzw ACC, VF03, VF10z NOP
MADDw.xyzw VF15, VF04, VF10w NOP

;Wait for operation to be executed

NOP NOP

NOP NOP

NOP NOP

;Calculate 1/W

NOP DIV Q, VF0Ow, VF15w

Load with increment instruction is used to load data for current vertex in
register VF10, VF11 and VF12, then transformation matrix is applied to
vertices coordinates and finally value 1/W is calculated, dividing the VF00 w
component (VFOO is the constant register with value (0, 0, 0, 1)) by the w
component of transformed vertex. Now it is time to deomogenize vertex

transformed coordinates, same value 1/w is also used to find real S,T,Q texture

49

PS2 - Tutorial Chapter 04 — Vector Units

Apply texture perspective
correction

Dealing with Z-Buffer value

k"

coordinate values:

MULg VF16, VF15, Q NOP

;Now normalize texture coordinate values.

MULg VF17, VEF12, Q NOP
NOP NOP
NOP NOP

;Convert to fixed point
FTOI4 VF19, VF16 NOP
Even texture coordinate vector must be multiplied for 1/W value to

apply perspective correction (See paragraph 3.6 for further details).

Since format of frame buffer is fixed point format (12:4) instruction ffoi4
perform the conversion between standard floating point format to fixed point
format. Here a strange thing happen, z component of the vector will go to the
Z-Buffer for depth test, but format of Z-Buffer is 24 bit integer, but ftoi4
transform float value into 16 bit fixed point value, that is very different from
Z-buffer value. To maintain code simple a little trick is used to avoid artefact
on depth test in rendered cube. If we consider a fixed point value 12:4 as a
simple integer value, we are actually multiplying real value by 16. Lets make an
example: if we have value 1,0f converting with ftoi4 lead to binary value
000000000001

value a simple integer value we obtain value 16. This means that after

, representing value 1 in format 12:4, if we consider this

transformation with ftoi4, Z real value is multiplied by 16, to avoid this
problem the Viewport Mapping transform is done with a range for Z that is
different from the one really used. Since output value is 12:4 we have only 16
bits for Z value and valid range is (0, 65535) but since original value will be
multiplied by 16 by the ftoi4 function, real range become (0, 4095).

ProjMatrix.MapToViewPort (2048-
2048 + wpWidth / 2,
2048 + wpHeight / 2,
2048 - wpHeight / 2,
4095.0, 0);

wpWidth / 2,

If original value of 16777215 is used, artefacts will occur because every
value greater than 4095 will overflow during the conversion and makes strange

things happens on the cube. Finally vertex output data is stored after GIFtag

NOP SQ VF17, 0(VI04)

NOP IADDIU VIO4, VIO4, 3
;Now color and vertex

NOP SQ VF11, 0(VIOS)

NOP IADDIU VIO5, VIO5, 3
;Now coordinates.

NOP SQ VF19, 0(VIO06)

NOP IADDIU VIO6, VIO6, 3

Every time that some data is stored the corresponding pointer is

50

PS2 - Tutorial Chapter 04 — Vector Units @Fﬁlﬂ
=

Don't forget branch delay slot

incremented by 3, this because for every vertex we have 3 distinct output data.

Then the end of the loop is reached.

NOP IADDI VIO2, VIO02, -1
NOP NOP
NOP IBNE VIO02, VI0OO, LOOP
NOP NOP

To close loop it is sufficient to decrement VIO2 register, that contain
number of vertices, and jump to the beginning of the loop if this value has not
reached zero. When VI02 reach zero, all input vertices are transformed and the
loop can end. Remember that the instruction after a branch such as IBNE will
be executed even if the instruction will branch, this is known as Branch Delay
Sht. In the example above a NOP NOP instruction is placed after the IBNE
to avoid problems. If the XGKICK instruction would be inserted immediately
after IBNE instruction, kicking vertex will start at the end of every cycle
iteration, making a mess on the screen. Last instruction end the microprogram
and kick the vertex to the GS

NOP [E] XGKICK VI13

NOP NOP

This conclude our first VU1 microprogram. Remember that the code
above is not optimized and to make faster and cleaner microprogram, VCL
tool can be used because it perform automatically optimization and makes
easier to write code. Finally do not forget to use svvudb, sauce’s VU’s debugger

that will help you a lot in coding VUs.

51

PS2 - Tutorial Appendix A: Three dimensional view @Fﬁlﬂ
=]

A

Three dimensional view

After all the objects are settled into three dimensional space and the
scene is ready to be rendered, it is necessaty to apply a transformation to map
the scene itself on a two dimensional space, the monitor. This transformation,
that maps 3D vectors in 2D ones, is cleatly a projection and it’s a linear
transformation in Homogeneous space, so it can be expressed by 4x4 square
matrix as for World Matrix. Now let’s look on how to derive it’s

representation.

To find a solution is convenient to divide the original problem into more
smaller ones. The final transformation is in fact derived in three step, because
cach of these is conceptually separated from the other. So the Projection
Matrix is composed by: View transform, Projection transform and ViewportMap
transform. In next section these transformations will be analyzed with great
detail to find 4x4 transformation matrices that will form final projection

mattix.

A.1 View Transform

Once the scene is ready to be rendered, the first thing to do is knowing
the position and the orientation of the viewer, this is done with I7ew transform
that is represented by a matrix called I7ew Matrix. The aim of this transform is
to change coordinate system to simplify the subsequent projection operations.
In the new coordinate system the camera (the eye of the viewer) is located at
the origin, and the direction of viewing is coincident with one of the

coordinate axes.

To define a new coordinate system, four distinct data are necessary, the
position of the new origin and the three axis that will form the new coordinate
system. In a view transform the new origin is the position of the camera, one
of the axis is the direction of view, another is the #p direction and the third is
determined by other two with a cross product to have an orthonormal basis.
The transformation that map a point from the original coordinate system
(0,X,Y,Z) to the new coordinate system (0, X,Y",Z')is well known and is
composed by a translation of =0 and a rotation expressed by a matrix in
witch the row are the coordinates of the new coordinate axes expressed in the
original system. The whole operation is so reduced in finding the expression

of the new reference coordinate system.

52

PS2 - Tutorial Appendix A: Three dimensional view

-Z Up
U
Y
N

> X

k"

X, X, X, 0|1 0 0 -0,
Y, Y, Y, 0|0 10 -0
Z, Z, Z, 01|00 1 -0,

0 0 0 1flooo0o 1
X, X, X, —«(X,0,+X,0,+X,0,)
Y, Y, Y. ~(Y,0,+Y,0,+Y.0,)
Z, 7z, 7. —(2,0,+20,+Z20.)
0 0 1

There are many techniques to find the expression of View Coordinate
System, but one of the simplest and easiest to use is to define the camera with
only three vector: Eye, A% Up. The first is the position of the camera, the
second is the point that the camera it is looking at and the third is the general
direction of Up. Since the Up vector must be perpendicular to the others, it is
simpler to give only its general direction and let the routine that build the
matrix adjust the value. Given these three values, it is possible to build two
different view matrix, one right handed and the other left handed; over these
two, the latter is preferred because maintains a more intuitive direction of view.
In this section we detive both of them, so the user is free to use whichever

form he prefers.

To determine right handed view matrix it is necessary to find the expression
of the view coordinate system (Eye, UV,N) expressed in cutrent coordinate
system. Eye is given by the user, so the first vector to find is the direction of
view (Dov) that is determined by (Eye — At), even if this seems strange
because the direction of view is from At to Eye this is needed to build a right

handed system, vector N is found normalizing Dov.

Next step consist to find vector U that is obtained normalizing cross
product of the general vector Up with N. Remembering the definition of cross
product, resulting vector is perpendicular both to Up and N and has the
direction show in figure. Last step is to find the real Up vector called V, this is
accomplished with another cross product between N and U as shown in figure.
Right handed view coordinate system has the unpleasant characteristic that the
camera looks towards the negative part of the z-axis, this lead to the fact that

object nearer to the viewer have greater z value respect to farer object.

Deriving a left handed view coordinate system is straightforward, simply
find N by normalizing (At — Eye), U is found by normalizing cross product
of N and Up and finally V is found with cross product of U and N. Now the

reference system is left handed but the direction of view is coincident with z-

53

PS2 - Tutorial Appendix A: Three dimensional view @Fﬁlﬂ
=

axis and this is more intuitive and simpler to work with.

A.2 Projection transform after Left Handed view transform

v

V4
A P
|
1
P’ ' Plane
T
d P
' '
I |
YC/ : |
0 P, Py
Y
A
P, AP]
.
S
TY /Z
|
- __»X

After view transform there is the need to project the object from 3D
space to 2D space to represent the scene on a monitor. Since the Direction of
View is coincident with the z-axis the projection transform is straightforward.
The only parameter is the distance of the screen of projection from the origin,
called d, as represented in red in the figure. To determine the operation needed
to project a point P into the plane, to obtain P’, a simple consideration can be

done.

First of all it is better to observe the scene Y axis, as shown in the left

picture. From the similitude of the two triangles OP'P, and OPP. it is easy to

see that:
P; _ Pd
B P

z

Same thing happens for y coordinates. The matrix that project a point P

into the plane perpendicular to z-axes at distance d is easily computed as

0
0
1

07
0
0
0

[1 0
0 1
0 0

00 Y

Division by z is obtained after the deomogeneization of the coordinates

(division by W). Even if this matrix correctly implement a projection it is not

used because of clipping. The problem is that our viewport has a finite

extension but the plane used for projection is infinite, a better way to proceed
is to define a finite projection area that represent our viewport called near plane,
represented in red in the figure. To define this area two point must be defined:

the bottom left corner P, = (I,b,n) and the upper right corner P, = (r,t,n),

also the maximum z value is given, and it’s called f, to define the area in blue

called far plane. The volume determined by these two quadrilateral is called

Viewing Frustum and contains all the objects that must be projected on our

viewport. The goal is to find a transformation that map the Vieving Frustum in

the unit cube, that is the cube having one corner at (—1,—1,—1) and the other
at (1,1,1). This transformation actually implement a perspective projection of
the point inside the frustum and makes clipping very easy because it is

sufficient to check if the coordinate lies outside the interval [—1,1].

54

PS2 - Tutorial Appendix A: Three dimensional view

Y
A Z
/)OV
/ Cw
Z
A
/ Dov
A\

v

k"

First transformation to do is making direction of view (Dov), determined
by the near plane, coincident with z-axis. This operation is needed if the z-axis
intersect near plane in a point different from it’s center as showed in the
picture. To obtain this it’s sufficient using a shearing transform in x and y
direction to make the Center of view (Cy;) lie on z-axis. The general form of the

shearing matrix is:

1 0 Shz O]
0 1 Shy O
=100 1 0
00 0 1

We must find the value of Shx and Shy that map Cw into z-axis, the
coordinate of the center of projection are:

T
Cw:[r+l,t+b,n}
2 2

After the shearing transform its coordinate will be:

r+1 r+1
1 0 Sha 0] = +nShx
01 Shy O

Y t+b _ t+b+nShy

00 1 O 2 2

n n
0 0 O 1
L 11

Now it is sufficient to set to zero x and y transformed coordinates to

find the value of the shearing parameters that maps center of projection over

the z-axes.
Shr = — r+1
2n
t+b
Shy = ———
Y 2n

After this transformation near plane is centered on z-axis and the new

value for the bottom left and upper right corner are:

P :[l—r’b—t’n}
2 2

P =[r_—lﬂn}
2 2

Next step is to do an uniform scaling in x and y coordinates to make the
slope of bounding plane equal to 1, this means that near plane has to become a
square with side length of 2n. Is easy to see that the scale factor must

transform the x coordinate of P, from the value (r - 1) / 2 to new value n. the

55

PS2 - Tutorial Appendix A: Three dimensional view

1

V4

Dov

v

v

k"

Now that the sides of the frustum have unit slope it is possible to find

matrix that represent this scaling is well known:

20 00
r—1
2n
1o =2 00
Se = t—b
0 0 10
0 0 0 1

the last transformation, that makes viewing frustum become unit cube. This
particular transform has to modify the sides of the frustum so they become
parallel to plane X = 0 and Y = 0. To achieve this it is sufficient to divide x
and y coordinate by coordinate z, with the same procedure shown at the

beginning of the chapter. This determines the first, second and fourth row of

1 0 0 0]

0 1 0 0
P=

B, P, B, P,

0 0 1 0

the matrix that represent this transform:

First two rows are same as unit matrix because x and y coordinates
should not be changed. Fourth column is calculated so w coordinate of
transformed vertex will store original z value, in this way the division by z it is

performed during deomogeneization.

Third row of the matrix determines the z coordinates of transformed
vertices and it has to be calculated to satisfy the condition that near plane has
to be transformed in plane Z = —1 and far plane to Z = 1. First thing to take
into account is that planes parallel to Z = Omaintain this property after
transformation, this means that new z coordinate does not depend on original
coordinate x or y and P, =P, =0. There is also to remember that
transformed z value has to be divided by new w value to omogenize the vector
and find the real z value. The expression of transformed z value is:

_ Bzt Pyw
- z

2z !
This expression takes into account that transformed w has the value of

the original z. Now if we apply the condition seen before a simple system is

obtained.

56

PS2 - Tutorial Appendix A: Three dimensional view @FEH
=

) P,

Pl [Pt ,—”—

,r /q,’ /’

Iy -

- X

PPT
Y /z
-= __»X

ot Byw 1 with ==n
nw w

Bt Bw 4y 2o
fw w

This is a simple linear system that gives back the value of P33 and P34,

this will complete the third part of the projection transform.

n +
Pssz—f

f—n
P _ 2

34 TL—f

So the whole matrix is:

10 0 0
0 1 0
P=
0 0 n+f 2fn
f-n n—f
0 0 1 0

Now the viewing frustum it is mapped into the unit cube and it’s
sufficient to combine these three transform together to find the matrix that

represent the fully perspective projection transform.

[2n 0 (I+7) 0]
(r—=1) (I=r)
0 2n (b+1) 0
PPT =P-Sc-Sh = (t-=5) (b-1)
0 0 f+n 2fn
-n n-—f
] 0 0 1 0 |

A.3 Mapping to the screen

(X27 YZ)

X1, YD)

Once the viewing frustum is mapped into unit cube there is the need to
represent the point into a 2 dimensional screen that has finite coordinate (X1,
Y1) (X2, Y2) as represented into left figure. This means that it is sufficient to
transform coordinate from the unit cube to screen. To transform a generic
interval [X,X,] into an interval [X,, X,] three transformation are needed:
first is a translation by quantity—X, to make interval start at 0, then a scaling
with a factor of (X, — X,)/(X2 — X,) makes the two interval extension
equal, finally a translation by —X; complete the transform. This transformation

has to be applied to X, Y and Z transformed coordinates, having as destination

57

PS2 - Tutorial Appendix A: Three dimensional view @FEH
=

interval the extension of the viewport. Since a screen does not have a Z
coordinate, the extension of the Z-Buffer is usually used, to fully use the

extension of the Z-Buffer.

The whole transform matrix become:

(X, - X, 0 0 X, + X,]
2 2
A A A ¢
VMT = 2 2
0 0 Zf =Zn Zf +7Zn
2 2
0 0 0 1

Combining together View transform, Projection transform, 1 iewportMap
transform we can obtain the full transformation that map a single point on 3D

coordinate system to 2D coordinate screen of the monitor.

58

